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Abstract—Activity recognition, as an important component of behavioral monitoring and intervention, has attracted enormous

attention, especially in Mobile Cloud Computing (MCC) and Remote Health Monitoring (RHM) paradigms. While recently resource

constrained wearable devices have been gaining popularity, their battery life is limited and constrained by the frequent wireless

transmission of data to more computationally powerful back-ends. This paper proposes an ultra-low power activity recognition system

using a novel adaptive compressed sensing technique that aims to minimize transmission costs. Coarse-grained on-body sensor

localization and unsupervised clustering modules are devised to autonomously reconfigure the compressed sensing module for further

power saving. We perform a thorough heuristic optimization using Grammatical Evolution (GE) to ensure minimal computation

overhead of the proposed methodology. Our evaluation on a real-world dataset and a low power wearable sensing node demonstrates

that our approach can reduce the energy consumption of the wireless data transmission up to 81.2 and 61.5 percent, with up to 60.6

and 35.0 percent overall power savings in comparison with baseline and a naive state-of-the-art approaches, respectively. These

solutions lead to an average activity recognition accuracy of 89.0 percent—only 4.8 percent less than the baseline accuracy—while

having a negligible energy overhead of on-node computation.

Index Terms—Compressed sensing, activity recognition, feature selection, energy efficiency, ultra-low power, optimization, adaptive
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1 INTRODUCTION

THE Internet of Things (IoT) brings new opportunities for
health care in unobtrusivemonitoring scenarios (eHealth),

for proactive personal eHealth control [1], sports training
applications [2], health-related timely interventions [3], etc.
Among all these applications, the core functionality is activity
recognition, which is a key enabler in context aware systems.
Activity recognition has numerous health-related applications
such as prevention, diagnosis, and monitoring of several ill-
nesses related to functional impairment [4] or Parkinson

disease [5]. In addition, it plays a crucial role in in Ambient
Assisted Living tools designed for elders [6].

Dozens of private companies have reached the market
of wearables and activity recognition. Smartwatches like
Apple Watch, sport chest-bands or wristbands such as
Microsoft Band, are just some examples. New technologies
in wearable devices provide more efficient processor units
to compute even more complex activity recognition algo-
rithms. The Snapdragon 400 processor is an example of a
high performance processor used in many of state-of-the-art
smartwatches. Low performance microcontrollers (MCUs)
can be found in many different wearable devices, as the
16-bit MSP430 MCU—that controls the open-source hard-
ware platform Nike Fuelband—or the 8-bit MCUs of
Sillicon-Labs for wearables.

Many current wearable activity recognition technologies
require that end-users follow certain protocols while being
monitored using sensors that are coupled with the human
body. For example, they must carry a wearable node at cer-
tain body location all the time; otherwise, physical activity
measurements (e.g., type and intensity of activities/move-
ments) will be inaccurate [7]. One study [8], showed that in
absence of automatic sensor localization, the accuracy of an
activity recognition algorithm drops to 33.6 percent from
98.4 percent. This means the signal attributes of wearables
are tightly coupled with their associated on-body node loca-
tion. Further more limiting the wearable on-body location,
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imposes user discomfort and limits the performance capac-
ity of wearables. This issue has many real-world implica-
tions. For example, while one person may prefer to use his/
her smartphone in his pocket, another person may prefer to
carry the smartphone in a purse or a belt-clip. While one
person may prefer to use a wrist-band sensor on his right
wrist, another person may prefer a left wrist setting. A new
trend is wearables allows users to wear wearables in more
than one predefined on-body location. The emerging clip-
on fitness trackers such as ‘Misfit Shine 2’ and ‘Fitbit
Zip’ are examples of this new trend.

Using the Snapdragon 400 processor, Bhattacharya et al.
[9] present a methodology for activity recognition using deep
learning. These algorithms need computational resources
thatmight not be present inmore simple devices. The authors
claimed that their system could be used and implemented on
off-the-shelf devices, however, they did not provide experi-
mental proof of low power consumption. Maurer et al. devel-
oped a framework called eWatch [10], which uses several
sensors for location and activity recognition but their main
goal was not on power efficiency. Therefore, it is unlikely that
their system can be utilized in every day settings because of
limited battery lifetime. In [11], Patterson et al. described a
context-aware graphical model to perform a fine-grained
activity recognition using Hidden Markov Models. The sys-
tem considers a different sensor modality, which uses tags in
objects and a RFID antenna. While the methodology is inter-
esting, its application is limited to smart environments such
as smart homes or smart nursing facilities. The authors
in [12], presented a Mobile Sensing Platform for daily activity
recognition. The system uses a large number of sensors,
which results in reduced battery life. Thus, due to the afore-
mentioned limitations, we will use low performance MCUs
to deal with the activity recognition problem, because they
are cheap, highly integrated, and low power.

Physical activity recognition, as one of the most popular
applications of human-centered IoT, is the specific target of
this study. However, this methodology can be potentially
extended to other applications of IoT where power efficiency
is an obstacle, such asmost of eHealth applications involving
continuous monitoring. For example, monitoring Heart Rate
Variability (HRV) for detection of cardiac failures, or photo-
plethysmography (PPG) for information extraction such as
blood pressure or oxygen saturation.

In this paradigm we can distinguish, at least, two scenar-
ios: i) a sensing node with some knowledge (i.e., simple fea-
ture extractions) that transmits data to a gateway platform
(e.g., a smartphone) in charge of the activity recognition; or ii)
scenario composed of a high performance device (e.g., a
smartphone) that monitors and performs light to moderate
computing tasks (i.e., activity recognition) but transmits the
data to a back-end server, as a data center, for storage or high-
demanding computation. Many commercial smartphone
applications running activity recognition tasks compute these
in the server side [13]—whichmakes this task independent of
the wearable device but, on the contrary, demands frequent
wireless data transmission. Offloading data from nodes to
Cloud servers remains into the Mobile Cloud Computing
(MCC) [14] and Remote Health Monitoring (RHM) para-
digms, leading to high energy and economic savings [15]. In
this paper we focus on the scenario i (one Plug&Play sensing
node and a smartphone as back-end). However, the method-
ology developed also fits in the scenario ii.

Developing energy-efficient system-level solutions and
computationally simple embedded software are warranted
in order to drive the wearable technology forward. At the
hardware system level there are ingenious solutions in the
field of energy harvesting from kinetic energy using piezo-
electric [16] and capacitive [17] technologies that reduce
considerably the power consumption of the sensing nodes.
They have studied this for application in activity recogni-
tion problems, however these solutions are still far from
commercialization. In this paper, we devise an ultra-low-
power solution applicable to state-of-the-art sensing nodes
based on adaptive Compressed Sensing (CS) methodology
to reduce the amount of data being transmitted. Com-
pressed sensing allows us to create a representation of the
original data in a transformed domain reducing the amount
of data to transmit with an acceptable minimal information
loss. Therefore, compressed sensing is more applicable
when having a periodic signal such as ECG [18], [19],
EEG [20], PPG [21] or motion data.

Our work presents a low-power optimized temporal
adaptive compressed sensing framework for activity recog-
nition. A preliminary version of this study has been pub-
lished previously in [22]. To do this, a coarse-grained
activity recognition is performed on-node. By motion data,
the system i) implements coarse-grained node localization
and ii) classifies the signal type to iii) automatically update
the compressed sensing rate in order to rigorously reduce
the amount of data being transmitted. We further imple-
ment our platform on a real device where the energy con-
sumption has been measured. Our results from real world
experiments show that the overhead of the methodology is
negligible compared to the overall energy saving achieved
in wireless transmission. Eventually, we compare the
achieved savings to the state-of-the-art compressed sensing
approaches and the baseline.

The remainder of this paper is as follows. In Section 2, a gen-
eral overview of the proposedmethodology is described. Basic
concepts about algorithms and techniques applied are then
introduce in Section 3. In Section 4, the main modules of the
system are detailed. Section 5 shows the evaluation and the dis-
cussion of the results. In Section 6 the authors discuss about the
paradigm of real-time dependability in real-world applica-
tions. Finally, conclusions of thiswork are drawn in Section 7.

2 METHODOLOGY OVERVIEW

This section describes the high level overview of the pro-
posed system. Furthermore, we compare our framework to
the traditional compression techniques and the state-of-the-
art techniques using compressed sensing approaches.

An activity recognition framework consists of two differen-
tiated parts commonly described inmost IoT systems: the sens-
ing node and the back-end computing unit. Our scheme
consists of a resource constrained and low cost activity tracking
device and a higher performance back-end, e.g., a smartphone.
However, this methodology can also be applied when the
activity tracker is a smartphone and the back-end is a server
hosted in a data center. In the following, we compare different
compression strategies in sensing nodes, while the back-end
unit remains practically unmodified (as shown in Fig. 1c).

2.1 State-of-the-Art Methodologies
The basic approach (Fig. 1a) as opposed to compressed
sensing, uses conventional compression/decompression
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algorithms (such as ZIP compression). Sensor reading are
compressed locally, and are decompressed and fed into a
fine-grained activity recognition module after transmission
to a back-end station. The superiority of compressed sens-
ing over such conventional algorithms, in motion data
application, has been shown in literature [13] both in terms
of computation complexity and compression performance.

The state-of-the-art approach (Fig. 1b) uses optimized
compressed sensing technique, but lacks any intelligent
on-node adaptivity. In other words, sensor readings are
optimized using a fixed compression rate (learned and opti-
mized off-line). While it can be conceived as a considerable
improvement over the basic approach, its minimization is
limited because of the absence of sensitivity to its context
(e.g., varied attributes of the input data, on-body sensor
location). The performance of the framework proposed in
this paper is compared with the aforementioned framework
in Fig. 1b, and also with a baseline approach where data is
transmitted without compression.

In order to eliminate the real-time feedback dependency
and improve the energy efficiency of the activity recognition
system, we propose a temporal adaptive compressed sens-
ing framework (Fig. 1c).

2.2 Proposed Optimized Methodology
The proposed adaptive compressed sensing activity recogni-
tion system (Fig. 1c), inherits the capabilities of sate-of-the-art

approach and introduces novel low-cost coarse-grained input
type detection and on-body node localization algorithms. The
context-awareness provided by these two modules enables
the node to autonomously detect such changes and adjust the
ratio and therefore provide adaptive and robust optimal
compression.

The sensing node can be potentially worn anywhere on
the body: pants pockets, chest, arm, and wrists are among
the most common on-body node location in activity recogni-
tion wearables (for simplicity throughout the paper we refer
to on-body node location as location). In our case, the sensing
node performs a novel dynamic compressed sensing
scheme to reduce the amount of data sensed transmitted
and thus enhance the battery life. The computation server
(i.e., back-end) receives the data and reconstructs an
approximation of the original signal to apply activity recog-
nition techniques after that on the application side.

Compressed sensing technique can reduce the amount of
data being sensed, processed, and transmitted with minimal
impact on the performance of the accuracy of the system
(see Section 3.1). This technique can be applied at i) at sam-
pling rate [23] (adaptive hardware sampling), or ii) once the
data are acquired at an adequate sampling rate.

The sensing node utilizes the sensor readings to extract
features for continuous context learning. Every time a data
segment is gathered and processed, the sensing node, if
needed, re-configures the compression ratio. Data segments
are values of several seconds of a triaxial accelerometer.
Features will be extracted from the compressed data. Using
these features two tasks are performed: i) coarse-grained
node localization and ii) coarse-grained and location depen-
dent signal type detection as shown in Fig. 1c.

We note that we make a distinction between the activity
label and the signal type. A activity label (i.e., physical activity
label) is any activity ormovement that the subject wearing the
device performs, such as: walk or jump. On the other hand, a
signal type is an abstract and undetermined concept that
refers to the idea that, signals having different morphology
and origin, can lead to an identical data processing regardless
of their corresponding activity labels. Thus, many different
activities can share the same signal type and therefore the
same compression ratio can be applied. From the perspective
of a sensing node worn on an arm, there is little to no differ-
ence between the two activities with respect to compression
ratio. Using the signal type instead of simply relying on the
activity label enables us to leverage adaptivity in an unsuper-
vised fashion, meaning we do not need to label the training/
test data to learn the signal type.

Under this circumstance, two optimization problems can
be defined: i) detecting the optimal number of signal types
(clusters of signals per on-body location), and ii) assigning a
compression ratio to each signal cluster such that the energy
consumption is minimized. For each location and signal
type, a specific compression ratio will be applied to the raw
data according to the look-up table (that is trained offline)
stored in the local memory of the sensing node as shown
in Fig. 1c. The input of this look-up table is the context (i.e.,
signal type per location) learned by the course-grained
module and the output is the context optimized compres-
sion ratio. The compressed data and the updated ratio are
sent to the back-end unit, where the compressed raw data
are recovered. In the back-end, features are extracted again
to compute: i) fine-grained node localization, and ii) fine-
grained coarse-grained location-aware activity recognition.

Fig. 1. Overview of the basic, the state-of-the-art (naive), and the pro-
posed compression methodologies. The back-end unit is detailed only in
the last one.

660 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 3, MARCH 2019

Authorized licensed use limited to: Washington State University. Downloaded on December 09,2020 at 05:17:35 UTC from IEEE Xplore.  Restrictions apply. 



In Section 3, we briefly elaborate i) how the compressed
sensing technique is performed; ii) how to devise an offline
GE-based optimization algorithm; and finally iii) how to
perform the activity recognition task. All the modules
in Fig. 1c are further elaborated in Section 4.

3 PRELIMINARIES

3.1 Compressed Sensing
Compressed sensing theory states that a signal x can be
recovered with minimal information loss by sub-sampling
the signal with order m < < n where n denotes the
Nyquist sampling frequency under sparsity and incoher-
ence assumption [24], [25].

Compressed sensing—as many other compression tech-
niques, such as Wavelet or Fourier Transform—are effi-
ciently applied in periodic signals. Representation of
periodic signals in terms of these transformations lead to
sparse signals; meaning that the most of the coefficients c
will be equal to zero after the transformation. In general, it
can be asserted that the movement signals used in this work
can be considered periodic signals. We briefly describe how
compressed sensing is formulated and applied in our study.

Given x sampled at Nyquist rate n, the signal x can be
written as a linear combination as

x ¼ Cc; (1)

where c is the set of sparse coefficients of the signal x after
domain transformation given the transformation basis C. In
our case, x is a one dimensional sensor reading segment of
length p, C 2 Rp�p is a Discrete Cosine Transformation
(DCT) matrix. Similarly, the length of c is equal to p.

To represent the sub-sampled signal y, the matrix F is
used. F is the sensing matrix and takes q random samples of
the signal x, thus

y ¼ Fx: (2)

In our case, signal y is the data being sent from the moni-
toring device to the back-end unit, and its length is q � 1;
and F 2 Rq�p. Notice that q=p ¼ m=n, and it is referred to as
the compression ratio cr. Randomization affects only mildly
to the calculus of features because these are based on statis-
tics of the morphology of the signal and not on temporal
properties (see Section 5.1).

To recover an approximation x0 of the original signal x in
the back-end, the estimation of coefficients c is required.
Using Eqs. (1) and (2), we can also write the compressed
signal y as

y ¼ FCc ¼ Ac; (3)

where A 2 Rq�p is the measurement matrix, defined in Eq. (4).
A is the extraction of q rows of the DCT matrix C, and it is
known by the sensing node and the receiver-end to com-
pute the estimation c0 of coefficients c. Thus, the recon-
structed signal x0 ¼ Cc0 � x

A ¼ FC: (4)

Computation of coefficients of c0 is expensive and has to
take place in back-end, with higher performance than the
monitoring devices. According to the authors that drove the
compressed sensing techniques to its current status [26],
[27], each column of matrix A implies to solve a linear

system. This is an undetermined linear system and is hard
to solve [28]. Therefore, the problem needs to be relaxed to
l1 � normminimization

Minimize kc0k: (5)

Subject to

ky�Ac0k < �; (6)

where � is the margin of reconstruction error. c0 can be
found in polynomial time using linear programming.

In this work we propose a temporal adaptive compressed
sensing approach for activity recognition. To the best of our
knowledge, only one work by Yuan et al. [29] presents a
time adaptive compressed sensing approach (applied to a
video problem). Chiu et al. [30] pose adaption of basis func-
tions of the sensing matrices and adaption of the compres-
sion ratio to the problem (energy auditing networks for
different services); however, the adaptation is not dynamic.

Compressed sensing is a very well known methodology
in the field of image processing. Hardware compressed sens-
ing [31] has been commercialized recently. Unfortunately,
there are no hardware implementation in microcontrollers
used in embedded wireless monitoring devices, and only a
RISC architecture of a specific-application processor for com-
pressed sampling is described by Constantin et al. in [32]. As
a result, in this paper, compressed sensing is implemented
as firmware (FW) of themonitoring node.

3.2 Application in Activity Recognition
Figs. 2a and 2c are examples of the processing of the com-
pressed sensing algorithm. Fig. 2a represents data from one
axis of the accelerometer acquired at 25Hz. In Fig. 2b the
sparse DCT is shown. This signal is sparse enough to be
transmitted—decreasing the amount of data and resulting
in significant power savings. Randomized sampling of
33 percent of this signal is used to recover x0 in Fig. 2c, as an
approximation of the original data x. It can be observed that
the morphology of the reconstruction is still distinguishable.

As Yang et al. state in [33], the sparsity of the physical
activities varies for different types of movements and loca-
tions. The authors in [33], evaluate different compression
ratios for different activities; they do not evaluate the accu-
racy over the activity recognition but over the signal recon-
struction, and they conclude that this can lead to similar
information loss when measured by the Normalized Root-
Mean-Square Error (NRMSE). However a supervised classi-
fier (trained with a large enough labeled data) is required to
detect changes in activities. We hypothesize that optimiza-
tion of the compression ratio based on signal-type recogni-
tion may result in even more signification energy savings
while using an unsupervised approach.

3.3 Optimization Using Grammatical Evolution
As mentioned in Section 2.2, the system running on the
sensing node needs to detect the signal type—based on the
detected location—in order to apply the optimum cr.

In our framework, it is not necessary to know the activity
labels or any other labeled data to work. It is important to
highlight that we do unsupervised classification (clustering)
and it is one of the strengths of the proposed model as
opposed to the labor-intensive supervised classification
whose performance is bounded by the provided training
data. Instead, this model uses unlabeled data which is abun-
dant and easy to gather. First, we need to optimize our
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clustering and then we can find the minimum ratio per each
discovered cluster. The details of this bi-objective optimiza-
tion problem are given by the following problems:

Problem 1 (Optimal signal-type clustering per on-body
location). For all the different activities from each on-body
node location, find the clustering solution that optimally identi-
fies the types of signals. See details in Section 4.1.4.

Problem 2 (Optimal compression ratio per cluster). For
each cluster containing a particular signal type per on-body
location, find the optimal compression ratio that minimizes the
energy consumption of the node and maximizes the accuracy of
the activity recognition in the receiver-end.

In order to tackle these problems, we use GE [34]. GE is a
grammar-based form of Genetic Programming (GP), used
to generate programs in any language. GE’s internal behav-
ior is based on a Genetic Algorithm (GA). GAs are stochastic
methods to solve complex optimization problems. Its heu-
ristic search allows to tackle faster big combinational prob-
lems, as ours, the optimal solution or really close to this.
GE has genotypes—represented as integer numbers—that
select production rules from a group expressed in a Backus
Naur Form (BNF) and lead to phenotypes. A phenotype is a
tree-shape structure which is evaluated in an iterative pro-
cess. In our case, a phenotype represents the set of activity-
features to be selected.

Following with the biological simile, a GA evolves a pop-
ulation formed by a set of individuals (the genotypes) as
shown in Fig. 3a. Individuals mutate and mix with each
other to create new ones in every generation. Each individ-
ual is evaluated, and those of each generation that better fit
the objective will survive and evolve with a higher probabil-
ity in future generations. For an example of a complete pro-
cess of decodification of a genotype refer to [35]. The gray
array in the top of Fig. 3b shows how a genotype looks like.
After applying the BNF’s rules, in our case, a phenotype
looks like the white array shown in the bottom of Fig. 3b.

The designed grammar is shown in BNF format in Fig. 5.
This grammar allows the optimization of the number of
clusters for the signal type detection.

A BNF grammar is represented by a set of parameters in
the form fN; T; P; Sg, where N denotes the set of non-termi-
nals (coded symbols), T denotes the set of terminals
(decoded expressions), P denotes the set of production rules
to substitute the elements ofN into T , and S is a non-terminal
element of N used as starting symbol. A model (labeled as
Model) is an array combination of (terminals, T ): the number
of clusters (K), and a set of F Boolean values (Boolean) that
indicate which activity-features 2 F have to be selected.

Because our approach is based on a multi-objective
optimization, we use a multi-objective genetic algorithm
inside GE: the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [36]. The main difference between a simple GA
and NSGA-II is that at the end, as opposed to a single
best solution, a set of non-dominated solutions is obtained
(traditionally named as Pareto front). NSGA-II is an elitist
approach, what means that a small part of the best candidates
remain unchanged into the next generation—they remain as
parents of the next generation, which enhance convergence
and allows computation of an approximation of the entire
Pareto front. Fig. 4 illustrates an example of a two-dimen-
sional Pareto front. Black points in Fig. 4 are the last indiv-
iduals or solutions of the NSGA-II execution. Red circles
surround those solutions that lead to the Pareto front. Refer
to [37] for details onmulti-objectiveGE implementation.

3.4 Optimizing the Clustering Scheme
As mentioned in Section 3.3, the optimization problem #1
finds the optimum number of clusters that matches the dif-
ferent number of signal types. To perform this task, a k-
means++ clustering is utilized (see Section 4.1.4). k-means++
is an unsupervised approach that needs an internal evalua-
tion index to rank each individual (solution) of the GE.

In order to evaluate each individual solution of the GE,
an internal evaluation index is needed. There are several
internal indices for evaluating a cluster, such as: the Davies-
Bouldin index, Dunn index or silhouette coefficient. While
any of these indexes could be used in our optimization, the

Fig. 2. Sparse recovery of activity walking using cr ¼ 33% and
NRMSE ¼ 0:08.

Fig. 3. Example of the population and chromosome decodification of the
GE problem.
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former has been employed because of its lower complexity.
The Davies-Bouldin index [38] is given by

R � 1

K

XK

i¼1

maxi6¼j
si þ sj

dðci; cjÞ
� �

; (7)

where the parameterK denotes the total number of clusters,
the parameter ci denotes the centroid of cluster i, the param-
eter si represents the average distance of all elements in
cluster i to the centroid ci, and the parameter dðci; cjÞ is the
distance between centroids ci and cj. We use the euclidean
distance as the distance metric.

The parameter R is non-negative. Lower values of R indi-
cate better clustering. R relates the scatter of the cluster with
the distance between clusters. As the distance between clus-
ters is in the denominator in Eq. (7), R is low when clusters
are not spread and each one is compact (i.e., the distance
between clusters increases).

4 SYSTEM DETAIL

In this section, we elaborate each module in Fig. 1c from the
perspective of the two functional components of the system:
the node, and the back-end computing unit.

The optimization problems have been solved using an
implementation of GE and NSGA-II algorithms available in
the HERO Java Library [39]. Compressed sensing techni-
ques, k-means++ clustering, and clustering evaluation have
been computed in Matlab. The decompression has been car-
ried out through the method to recover sparse signals via
convex programming implemented in Matlab by Romberg
and developed in [40]. The activity recognition and the
node localization have been computed using WEKA [41].

4.1 Sensing Node View
Sensing nodes acquire data from triaxial accelerometers and
store them into segments (s) of few-second sensor data.
Nodes can be placed on different locations of the body. For
the sake of simplicity, five known locations are considered.
For the compressed sensing approach, each data segment
s—at time k—is sub-sampled at rate cr½t� 1�, leading to a
new segment s0. This takes place in the Sparse Filter module
(see Fig. 1c). From this segment, different features are
extracted in the Coarse-grained Feature Generation block. With
these features, the location is determined in the Coarse-
grained node Localizationmodule. For each location the signal
type is detected by the Coarse-grained Signal Type module.

With the location and the signal type, the compression ratio
is updated to cr½t� according to the embedded Look-up table.
The measurement matrix A from Eq. (4) is applied in the
DCTmodule and compressed data are transmitted.

4.1.1 Sparse Filter

In this module, the sub-sampled s0 sequence is created pick-
ing cr½t� 1� random samples of segment s. At this point, the
compression ratio has not been updated yet. Therefore,
transitory states that lead to the selection of non-optimal
and delayed compression ratios, may occur between transi-
tion of activities. However, these transitions are sparse in
time and are insignificant in practice.

4.1.2 Feature Generation

Using the sub-sampled sequence s0, 30 morphological fea-
tures are computed, as it will be shown in Section 5.1. Com-
putation of these features is computationally light and a
relatively simple task to perform for resource constrained
monitoring nodes.

4.1.3 Coarse-Grained Node Localization

Different data mining algorithms have been trained to clas-
sify and detect the node localization: classification trees,
support vector machines or k-means among others. Random
Forest [42] has shown the highest accuracy using 10 cross-
fold validation. Random Forest is a supervised algorithm that
generates a set of different trees under certain rules. To clas-
sify a new instance—vector of features extracted from
sequence s0—the generated trees vote for the most popular
class. All classes (locations) must be in the training set.

Random Forest algorithm is a sequence of if-else state-
ments which makes it more practical to implement in sens-
ing nodes with constrained computation capacity. The
Random Forest algorithm is trained offline using all 30 fea-
tures extracted from uncompressed raw data. In real time,
as the features are extracted from sub-sampled data, a
coarse-grained node localization will take place.

4.1.4 Coarse-Grained Signal Type Classification

Several known daily and sports activities are considered for
this research (see Section 5.1). As defined in Section 2.2, we
will classify our movement data into signal types. As was
previously mentioned, the cardinality of the set of signal
types is unknown (signal type detection is an unsupervised
classification problem). To achieve the best performance-
power saving trade-off, we need to solve the optimization
Problems 1 and 2 stated in Section 3.3:

Optimization Problem #1. Clustering of the optimum num-
ber of signal types maximizing the number of clusters
#k 2 K, the quality Qidx of the final cluster, and minimiz-
ing the number of required features#f 2 F .

Fig. 5. BNF grammar used for to solve the problem of optimal signal type
classication.

Fig. 4. Example of Pareto front to minimize a two-dimensional objective
problem.
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As granularity criterion, we consider K ¼ 2; 3; . . . ; 25,
and#k > 1 as a constraint. This granularity has been estab-
lished in order to minimize the computation time of the
optimization problem. The limit is defined by the upper-
bound on the number of clusters possible: 125 (Dmincr ¼
100 � 1

125 ¼ 0:8%), equal to the size of input data. Maximizing
the number of clusters will allow us to apply several com-
pression ratios that lead to a more accurate control of the
energy consumption in the sensing node. However, high
granularity could lead to close clusters with slightly differ-
ent compression ratios. To avoid this, we have established a
trade-off between the number of clusters and granularity,
and thus, we studied only 25 different values, so that the
minimum increment of Dmincr ¼ 100 � 25

125 ¼ 4:0%, which is
not too low or not too high (for 25 Hz and 5 seconds data
length it leads to compression of 5 samples). The quality of
the cluster is computed using the Davies-Bouldin index,
thus Qidx ¼ R. #f will be minimized to reduce the compu-
tation in the node, with F ¼ 1; 2; . . . ; 30. Given that, the
multi-objective problem can be formulated as

min #f;Qidx;
1

#k

� �
: (8)

Given a number of clusters #k 2 K and a set of features
f 0 2 F , the system computes the goodness of the clustering
Qidx. Because there are no labels to indicate the different sig-
nal types, this is an unsupervised clustering that has been
implemented using a k-means++ algorithm.

Fig. 6 illustrates two optimization levels. The upper one
is an example of the optimal partitioning of the data space.
In this example, four different types of clusters and the cor-
responding values are found.

In this optimization, the selected solutions are named as
S�
PST

. For each one of the selected solutions a compression
ratio set is assigned. These appear in the lower abstract
plane in Fig. 6, and these values are found through a second
optimization problem stated in Section 3.3.

Optimization Problem #2. To find the optimum set of com-
pression ratios crset;f 0 for a given set of features f 0 that maxi-
mizes the weighted mean of the compression ratio crset;f 0
and maximizes the accuracy of the activity recognition aAR

in the back-end. Thus, themulti-objective problem states that

min 1� crset; 1� aARð Þ: (9)

The weighted mean compression ratio is given by

crset;f 0 ¼
1

N

X#k

i¼1

nicri;f 0 ; (10)

where N is the number of instances in the training set, ni is
the number of instances that have been classified into the
cluster i, and cri;f 0 is the compression ratio for cluster i using
the set of features f 0. This optimization—based on each
solution S�

PST
—leads to a new Pareto front. In this Pareto

front, the selected solutions S�
PCS

must satisfy

max
S�
PCS

ðcrset;f 0 j "AR 	 "thÞ; (11)

to be implemented in the nodes.
Eq. (11) establishes that the solutions to be implemented

are the ones with higher weighted mean compression ratio
from those solutions which have an error in the activity recog-
nition "AR less than a threshold "th. The threshold "th is a qual-
ity criterion set defined as the extra error added to the lower
bound error in activity recognition "AR ¼ 100� aARBase:

. Here,
the extra error has been set to 5 percent. Thus, "th ¼ "AR þ 5%.
This value has been chosen based on criterion and experience
of the researchers. It has been considered that this value helps
to relax conditions to achieve better consumption metrics, as
well as to keep a considerable quality level.

The maximum number of clusters established in the pre-
vious optimization problem also sets the granularity in the
compression ratios. Thus, in the crset;f 0 each value cri 2
CS ¼ 0; 4; 8; . . . ; 96—K ¼ 25 equidistant levels in the inter-
val [0, 100).

As in the example, incoming data classified as signal type
1 in Fig. 6, is compressed with cr ¼ 50%, while data classi-
fied as signal type 4 is compressed with cr ¼ 80%.

These two optimization problems are computed offline,
and the relations {localization, signal type, cr} are stored in the
internal memory of the node in a Look-up table.

4.1.5 Measurement Matrix

When the output of the previous module leads to a new cs½t�
compression ratio, this is used to select the corresponding
measurement matrix. Raw data are multiplied by the DCT
matrix and then sent wirelessly to the back-end unit.

4.2 Back-End View

4.2.1 Fine-Grained Feature Generation

A segment of compressed data that includes information of
the cr used is received. With this information, the estimation
x0 of the original signal is computed using a copy of the
measurement matrix A stored on the node. Features are
computed from the recovered segment to perform the node
localization and the activity recognition.

4.2.2 Fine-Grained Node Localization

In this phase we perform node localization on the received
and reconstructed data segments. The Random Forest proce-
dure has been chosen as in the sensing node. Once the data
are recovered, the system works independently of the com-
pression ratio used in the sensing node. The Random Forest
is trained using the data recovered for all compression
ratios. This leads to a fine-grained node localization. All the
30 features are considered in the Random Forest algorithm.

4.2.3 Fine-Grained Activity Recognition

As in Section 4.1.4, after training different algorithms, such
as multi-layer perceptrons or random trees, a Random Forest
algorithm has shown the best performance in terms of train-
ing error. After the node localization phase, the fine-grained
activity recognition is performed. All features are consid-
ered for this purpose in the back-end.

5 EVALUATION AND RESULTS

In this section, we thoroughly evaluate the proposed system.
We present and discuss the results and the performance of

Fig. 6. Per each location: Division of the different signal types found and
the assignment of the compression ratios.
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the two optimization problems: i) clustering of the optimum
number of types of signals; and ii) optimum assignment of
compression ratios for those clusters in addition to the mod-
ules in the sensing nodes and the back-end units. Finally, a
realistic experimental framework is proposed and used to
measure the energy savings of the system.

5.1 Data
To evaluate the framework, the real world human activity
dataset UCI Daily and Sports Activities Data Set [43] is used.
These are real data acquired from 8 subjects (4 male and 4
female, between the ages 20 and 30) asked to perform 19 daily
and sports activities, such as: sitting, walking, running at dif-
ferent speed, jumping, rowing or playing basketball. Data are
acquired at 25Hz using a triaxial accelerometer. Each activity
takes 5 minutes and data are chopped into non-overlapping
segments of 5 seconds (125 samples per axis). Data were
acquired simultaneously from a wearable sensor placed on
five different on-body locations: torso (T), right arm (RA), left
arm (LA), right leg (RL) and left leg (LL). The data setwas split
into training (80 percent) and test (20 percent).

From these data, 10 different statistical features were
extracted [44] for each axis of the accelerometer. This leads
to 30 features per data segment of 5 seconds. These features
are: the amplitude of the segment amp, the median med, the
mean mn, the maximum and minimum values (max and
min), the peak to peak increment p2p, the variance and the
standard deviation (var and std), the root mean square
value rms and, finally, the difference between the first and
last values of the sequence s2e. In Section 5.5 our feature
selection mechanism is described. Furthermore, the impact
in energy of this selection is elaborated in Section 5.4.

5.2 Optimization
In this section, the results of the optimization problems
using GE and NSGA-II are shown. For both processes, the
number of individuals for each generation has been set to
250. Likewise, the number of generations has been set to
1,000 and 500 for signal-type clustering optimization and
compression ratio assignment optimization, respectively.
For each generation, all individuals are evaluated externally
using compiled code created using Matlab. The number of
individuals per generation has been chosen to reduce the
amount of external calls to the classifiers. The number of
generations has been chosen after some tests. For these val-
ues of the parameters, the solutions remain approximately
stable and no new solutions (individuals) appear at the end
of the optimization process.

5.3 Performance
Following paragraphs show the performance results of the
optimization problems on-node and the Random Forest clas-
sifier for both node localization and activity recognition in
the sensing node and the back-end unit.

5.3.1 Coarse-Grained Feature Generation

Thismodule computes 10 features for each axis of the acceler-
ometer. Features are calculated over compressed data which
allows important reduction of the energy consumption.

5.3.2 Signal-Type Clustering Optimization

Solutions that solve Eq. (8) are plotted in Figs. 7a, 7b, 7c, 7d,
and 7e. These figures represent the best solutions (black points)

of the GA, i.e., the last generation of the population. The non-
dominated solutions SP represent the Pareto front (circles).

Because we have three optimization goals, the figures
should be plotted in three dimensions. However, since all the
solutions on the Pareto front share the same value on feature
axis r#f ¼ 1, we plotted the figure in 2D. The only exception
is the location Left leg that uses two features. All the 10 solu-
tions in Fig. 7e belong to the non-dominated Pareto front.

Fig. 7. Signal-type clustering optimization.
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Reducing the number of features is a significant result because
it diminishes the complexity of the implementation of the k-
means algorithm in the sensing node, and the same timemaxi-
mizes the performance of our resulting system.

It is worth mentioning that the minimization of the num-
ber of features was easily accomplished by the NSGA-II
algorithm—from the first generations the selection was rap-
idly established. This can be understood as another indica-
tor that not all the features are useful and only a small
selection of them becomes meaningful. In a additional
mono-objective optimization process it was observed that
the optimal number of clusters for our training set is
#kopt ¼ 2. As our criterion to reduce the energy costs goes
through increasing this number, the optimization process
achieves solutions using a high number of clusters appeared
in the Pareto front (in the next section it is shown that the
criterion to maximize#k is correct).

In the Pareto frontswehave selected two extreme solutions
and a third one between them to compute the next optimiza-
tion process. These selected solutions S�

PST
are represented as

blue bold circles in Figs. 7a, 7b, 7c, 7d, and 7e. The Davies-
Bouldin index R remains in the same range for all locations
but for torso, where it is lower. For all the observations in the
heuristic experiments, the values 0:15 	 R 	 1:60; so results
are considered acceptable being always lower than 0.5, and
lower than 0.45 for the selected solutions S�

PST
.

Table 1 shows the number of unique compression ratio
values #crunique for each on-body location. We define the
relative clustering-ratio assignment efficiency (ncluster) for
each location as the ratio of the number of unique compres-
sion ratio assignments over the number of distinct clusters,
as follows:

ncluster ¼ 100
#crunique
#kmerged

ð%Þ: (12)

Smaller values of ncluster indicate more redundancy,
meaning that the same compression ratios appear several
times while clusters cannot be merged in Fig. 6, because the
signal types for that location are quite similar. On the con-
trary, larger ncluster means that a the identified clusters are
more varied in terms of the compressed sensing ratios
assigned to them, and the look-up table in Fig. 1c is smaller
as well. As an example, Table 2 lists the distinct clusters for
Torso location and their associated compression ratios.
According to the obtained efficiency, we can observe that

the granularity criterion established for the number of clus-
ters#kwas computationally sufficient.

5.3.3 Compression Ratio Assignment Optimization

For each solution S�
PST

, anotherNSGA-II optimization has been
performed. The Pareto front resulting from each optimization
over the training set is shown in Figs. 8a, 8b, 8c, 8d, and 8e.

For the criterion stated in Eq. (11), horizontal lines have
been drawn in Figs. 8a, 8b, 8c, 8d, and 8e. These lines cross
through the three Pareto fronts and the results are compared
in Table 3 for each location. This table compares the accuracy
of the baseline approach, our adaptive temporal compressed
sensing methodology and three different naive solutions—
the minimum, maximum and average value of the selected
solution (bold numbers) from all locations. Adjusting "th
changes the optimal compression ratios, respective to the
derivative of the Pareto front. In Figs. 8a, 8b, 8c, 8d, and 8e, it
can be seen that, a larger value for "th leads tomore compres-
sion and energy saving, and lower number of clusters. On
the contrary, smaller "th leads to less compression and
energy saving, and a higher number of clusters (#k).

As expected, in most of the cases, a high number of clus-
ters leads to high weighted mean compression ratios, and
thus, a lower energy consumption. The compression ratios
are different for each node location and similar for few loca-
tions—arms and legs—because movements are similar. The
highest compression ratios are achieved for nodes located
on arms. Therefore, it is expected that nodes placed on arms
save more energy due to data transmission.

We note that the same compression ratio could be
assigned to different clusters. Those with the same compres-
sion ratio that are adjacent are merged in #kmerged, and the
new centroid is computed. After this process, #k has been
reduced at least in one for three locations (see Table 1).

The highest, the lowest and, the average compression ratios
of the solutions selected for each location have been studied in
the naive methodology. The last three rows in Table 3 com-
pare their accuracy. Only the solutionwith cr ¼ 42:8% is com-
pliant with the quality criterion stated in Eq. (11) (5 percent
threshold on residual error of classification). This is the solu-
tion selected to compare with our proposedmethodology. So,
henceforth, the energy consumption due to transmission for
the naive case and LLmust coincide.

5.3.4 Coarse-Grained Node Localization

For the node localization process performed in the sensing
node, a Random Forest algorithm was trained. As memory is
a limited resource in monitoring devices, only one Random
Forest model is stored. This model was trained with data
without compression from all locations. The location is
detected when compressed data are processed by this mod-
ule. The accuracy of the trained model reaches up to 97.8
percent as shown in the confusion matrix in Table 4.

Mislocalizations happen mostly between legs. The higher
error happens when 14.4 percent of times LL is classified as

TABLE 1
Values of Optimized Objectives per Location

Location f 0 #k #kmerged #crunique nclusterð%Þ
T mnX 18 17 10 58.8
RA mnX 14 13 8 61.5
LA medY 25 24 13 54.2
RL mnZ 2 2 2 100
LL mnZ 14 14 11 78.6

TABLE 2
Clusters for Torso

Cluster A B C D E F G H I J K L M N O P Q

cr (%) 72 64 72 12 72 44 76 40 68 72 56 64 56 76 88 64 28
Centroid (units) �6:74 �4:67 �3:72 �3:14 �1:84 �0:59 0.36 1.43 2.51 4.23 6.99 7.69 8.38 8.96 9.25 9.51 9.75
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RL and 11.8 percent of times RL is classified as LL. This will
lead to over-compression and sub-compression respec-
tively—according to the selected solutions in Table 3. These
dissimilarities might compensate each other regarding the
accuracy and the energy consumption. Therefore, according

to our results in Table 4, we show that this module does not
propagate the error because of compensation.

5.3.5 Fine-Grained Node Localization

When data is reconstructed in the back-end, features are
computed and node localization is performed. The accuracy
of the fine-grained node localization module is shown in the
second column in Table 5, and they are the best classifica-
tion of the node location possible in the back-end if there
were no misclassifications in the coarse-grained node locali-
zation. These results are compared with the ones achieved
using the naive system with a fixed compression ratio of
cr ¼ 42:8% and the baseline approach as well.

A Random Forest algorithm has been trained for each
approach and the results are shown in Table 5. As can be seen,
results are really close each other and there are only slight dif-
ferences with respect to the baseline. Our approach differs
only 1 percent accuracy from the naivemethodology—despite
the average compression ratio of our approach is 62.6 percent
comparedwith 42.8 percent of the naivemethod.

5.3.6 Fine-Grained Activity Recognition

The actual results for the activity recognition are those
shown in Table 3. aARBaseline

represents the baseline accuracy
for the activity recognition algorithms trained in the back-
end of the system. As there are no limitations in the compu-
tation, in the back-end all features are computed and used.
aARAdap:Temp:

jcrset;f 0 represents the final accuracy for the activ-
ity recognition for our methodology. The final solutions are
those in bold in Table 3. The average aARAdap:Temp:

jcrset;f 0 for
all locations s 89.0 percent. As aforementioned, the accuracy
of the naive solution selected is 91.0—2 percent higher that
the average value of our methodology. In spite of this,
in Section 5.4 we show that, being both methodologies com-
pliant with the quality criteria, the benefits of our proposal
in terms of energy savings are significant.

5.4 Energy Consumption

To test the energy performance of the proposedmethodology,
an experimental set-up has been developed. In this sectionwe
show the results in terms of energy savings due to the data
transmission (which represent the 81 percent of energy con-
sumption in the baseline mode), and we compare them with
the small overhead that the system introduces for the compu-
tation of the on-node calculations performed in our custom-
designed activitymonitoring device shown in Fig. 1c.

5.4.1 Experimental Set-Up

In this study, we programmed our methodology onto an
actual activity monitoring device (see Fig. 9). The experimen-
tal set-up consists of a sensing device that performs the sys-
tem’s tasks and another device to measure its power
consumption. The sensing node incorporates one ATmega328
microcontroller running at 8 MHz, a 10-bit precision acceler-
ometer sensor ADXL335, and a Bluetooth module RN41-3
that sends the data to a computer configured in deep sleep
mode and using a power transmission of�12dBm. The device
under measure is a platform that monitors the current in the
sensing node’s battery using the INA219 sensor. Current is
measured through a shunt resistor of 0:1V the measurement
precision is 100mA and sent to the computer at a rate of
500Hz. All results are computed for the weighted average
compression ratio achieved for each location in Table 1.

Fig. 8. Compression ratio assignment optimization.
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To obtain the total energy consumption "T , a linear energy
model is proposed in Eq. (13) and the results are compared
with the baseline energy consumption "Baseline, where the
dummy system only transmits raw data every 5 seconds.
This model considers the single energy consumption of each
module of the system (node side in Fig. 1c) in three main lev-
els: sensing s, processing p and transmission t. We assume
that the total energy consumption is the sum of individual
consumption of eachmodule of the system.

Tasks are executed independently in a loop. The execu-
tion time to process 5 seconds of gathered data is also mea-
sured using time-stamps. The drawn current is measured as
well. Using the timing information we are able to compute
the energy consumption

"Total ¼ s þ pþ t; (13)

with

p ¼ SF" þ FG" þ ðNL" þ ST"Þ þMM": (14)

In the naive approach

pNaive ¼ MM"; (15)

because no feature computation, on-body node localization,
or signal-type detection is performed.

To ensure that the system passes through all the states, a
piece of the test dataset has been coded in program mem-
ory. This data is read once and stored in RAM as for real
gathered data. To lead to the energy model in Eq. (13), we
proceed as follows:

1) Tomeasure the consumption of the sensing process s,
the accelerometer module is connected and a simple
code reads movements at 25Hz—same sampling rate
than the UCI Data Set uses—and stores data in RAM.

2) p is the result of the five different blocks in the node
side. For each location we individually measure the
energy consumption of the processing modules. As
shown in Eq. (14): the SF" consumption of the Sparse

Filter, the FG" due to the Coarse-grained Feature Gener-
ation, both machine learning algorithms blocks
Coarse-grained Node Localization (NL") and Coarse-
grained Signal-Type detection (ST"), and the Measure-
ments Matrix using the DCT (MM").
� SF": For each location is stored in ROM memory.

It is a 1D array of crset;f 0 random numbers. Each
number represents an index of one element of 5
seconds of data stored at 25Hz. Its energy con-
sumption is SF".

� FG": the consumption of this module depends on
the compression ratio, the larger the segment, the
heavier the computation. The consumption of
this module will be calculated when computing
all 30 features.

� NL": a Random Forest is implemented. This is a
sequence of if � else sentences. For the imple-
mentation using#f ¼ 30, the average size (num-
ber of nodes) of the trees is 2020. The number of
trees in the forest is 100. For the sake of simplicity
we coded one, but the total energy consumption
takes it into account.

� ST": this consumption is the result of a k-meansal-
gorithm. As the optimal number of features
found for all locations is #f ¼ 1, this implemen-
tation finds the closer centroid within a 1D group
of#kmerged clusters in a sequence of if � else sen-
tences (see Table 1).

� MM": the multiplications of DCT matrices lead
this consumption. The measurement matrices
are stored in ROM and loaded to RAM at the
beginning of the execution in order to perform
the multiplications faster.

3) Finally, the model includes the energy consumption
of data transmission using Bluetooth, t. For these
experiments:
� First, we measure the baseline energy consump-

tion "Baseline when our system is not implemented

TABLE 3
Accuracy of the Selected Solutions after the Two Optimization Processes and the Naive Approach Compared to the Baseline

Location T RA LA RL LL Average að%Þ
aARBase:

ð%Þ / "thð%Þ 93.2 / 11.8 93.3 / 11.7 92.6 / 12.4 95.1 / 9.9 95.0 / 10.0 93.8

#k 2 18 25 2 14 25 3 17 25 2 24 25 2 14 25
89.0crset;f 0 ð%Þ 64.9 65.2 64.6 76.7 77.4 75.4 76.0 75.7 76.6 51.2 50.6 50.3 37.5 42.8 40.1

aARAdap:Temp:
jcrset;f 0 ð%Þ 88.2 88.4 88.3 88.6 88.6 88.2 87.7 87.6 87.7 90.2 90.2 90.4 90.2 90.0 90.0

aARNaive
ð%Þ jcr ¼ 42:8% 91.9 91.5 92.1 89.9 89.6 91.0

jcr ¼ 62:6% 89.0 89.8 90.1 83.6 83.5 87.2
jcr ¼ 77:4% 83.6 86.7 87.7 76.1 76.7 82.2

TABLE 4
Confusion Matrix of the Coarse-Grained

Node Localization Module (%)*

Classified as! T RA LA RL LL

T 97.8 0.3 1.6 0.0 0.3
RA 2.7 91.8 4.3 1.2 0.0
LA 4.5 1.2 91.2 1.5 1.6
RL 0.0 4.8 0.1 83.3 11.8
LL 0.9 1.5 7.1 14.3 76.1

*Light gray means sub-compression. Dark gray means over-compression.

TABLE 5
Accuracy of Node Localization in Back-End Unit ð%Þ

If node placed in Temporal adaptive
compressed sensing

Naive
cr ¼ 42:8%

Baseline

Torso 97.4 98.2 98.6
Right arm 97.6 98.7 98.7
Left arm 95.4 97.1 97.5
Right leg 95.1 95.6 97.7
Left leg 93.2 93.8 96.7

Average 95.7 96.7 98.2
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and all raw data is transmitted every 5 seconds.
Every second the Bluetooth transmitter wakes up
and sends 375 samples of data—25 samples for
each axis of the accelerometer using 10 bit preci-
sion. Thus, the energy overhead of this baseline
solution comes mainly from the switching of the
transmitter.

� The amount of samples to send every 5 seconds
for each location according to the weighted aver-
age compression ratios are: i) 132 for T, ii) 87 for
RA, iii) 90 for LA, iv) 183 for RL and v) 216 for
LL. Using the naive methodology 216 samples
are sent every 5 seconds.

With this experimental set-up, we obtain the energy con-
sumption listed in Table 6. This table shows the average
energy values per second. The consumption of the sensing
process s is an offset equal for all locations. p is the average
consumption of the processing in the sensing node
(see Eqs. (14) and (15)). t is the consumption due to data
transmission that takes the lower values for locations with
higher compression ratio.

As expected, the larger the weighted average compres-
sion ratio, the higher the energy savings. This can be seen
especially when node is located in LA. Fig. 10 shows the rel-
ative percentages of the energy consumption for the tree
components assumed in Eq. (13), for each location, the naive
approach and the baseline. The energy consumption of the
most expensive process, the transmission, has been reduced
up to 81.2 percent for LA, and a small overhead of our sys-
tem leads to total energy savings up to 60.6 percent in this
location when compared with the baseline. Compared with
the naive approach, for the LA location too, these values
have been reduced up to 61.5 percent in transmission, and
35.0 percent for the overall system. All these solutions and
the naive one are compliant with the restriction of extra
error in activity recognition of 5 percent over the baseline.

While the energy of computation might seem expensive,
is a small 
 13% overhead for all locations. Computation
time ranges from 1.9 to 2.2 seconds, from lower to higher

crset;f 0 . All consumption that performs the expression of p
are detailed in Table 7.

Computation of features is the most expensive process.
Computation of the Sparse Filter (SF") and Signal-type clus-
tering optimization (ST") are almost negligible.

Our analysis estimated computation power overhead of
13 percent (of the total energy consumed, for all locations).
This is quite insignificant as at the end, total energy savings
of at least, 31.7 percent was achieved. The average saving
over all locations in our approach was 48.7 percent which is
considerably higher that the naive model (39.4 percent). The
only case where naive model outperformed our approach
was LL location. The reason behind this observation is that
when optimizing the compression ratio for the naive
approach, the maximum ratio belonged to LL and hence,
for only that on-body location, the naive approach can per-
form well without the need for an on-node localization
module. However, it is obvious that for any other location
this saving would degrade due to lack of on-node location-
awareness and intrinsic bias of the optimization model
towards the LL location. Our result is significant, because
we were able to achieve higher savings on average despite
having computation overheads (e.g., by having a coarse-
grained node localization module) while making the system
much more robust against on-body sensor displacement.

We have demonstrated that significant reduction of data
transmission of our adaptive temporal compressed sensing
approach lead to energy savings, resulting into substantial
increments of battery life. We have also demonstrated that
the adaptive temporal version is better, on average, than the
naive approach compressing data at a fixed rate.

5.5 Study of Features
As mentioned previously, 30 features have been extracted. It
was noticed that some features were selected more times
than others by the optimization algorithms. An example is
shown in the histogram shown in Fig. 11. This figure depicts
the distribution of features selected by the Optimization
problem #1 for both dominated and not dominated solutions.

A preliminary study has been carried out in order to see
correlation between features, because some features might
be highly correlated. To see this, Fig. 12 shows the absolute
value of the matrix of correlations for all features and each
location. As it can be observed, correlation between features
is similar among locations. These matrices include all the
subjects and activities. The lighter the color, the higher the
correlation. We can easily see that there are only few fea-
tures with low correlation between them; this might help
with the simplification of the system.

TABLE 6
Average Energy Consumption and Total Energy Savings

Location sðmJÞ pðmJÞ tðmJÞ "Total "Tot:Savingsð%Þ
T 13.4 4.7 15.9 34.0 51.6
RA 13.4 3.5 11.2 28.1 60.0
LA 13.4 3.6 10.7 27.7 60.6
RL 13.4 5.7 23.5 42.6 39.4
LL 13.4 6.8 27.8 48.0 31.7

Naive 13.4 1.4 27.8 42.6 39.4

Baseline 13.4 - 56.9 70.3 -

Fig. 10. Relative energy consumption in the sensing node.

Fig. 9. Experimental monitoring node.
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According to results in Fig. 12, and results in Table 1, we
observe that i) only 1 feature is necessary for the signal-type
clustering, and ii) only few features are not highly correlated.

Low correlated features in Fig. 12 are mostly those cho-
sen by the optimization process—median med and mean
mn are well represented. It is interesting to see that the s2e
values, although they are not correlated with any other fea-
ture, are barely selected. We can explain this fact as the
information provided by those signals is not enough to dis-
tinguish the signal type.

As can be seen, the selected features in Table 1 match
with the expected ones regarding the distribution in Fig. 11
too. So, we could reduce the number of features to make
more efficient the coarse-grained node localization and the
signal-type selection on sensing nodes.

For the sake of simplicity, this paper only presents a brief
study to show the feasibility of feature reduction. To do this
we have reduced the number of features down to 6 (median
and mean for all axes), and the study of the impact on
energy savings due to data processing is shown in Table 7.
In this table, it can be seen that using #f ¼ 6 consumption
values of FG" and NL" vary. Node localization using less
features leads to a higher consumption of NL" as expected
because using less variables makes the classification harder
and the trees are larger (2,467 nodes on average).

In this example, we showed that by further reducing the
overhead of computation, up to 14.7 percent (1mJ) extra
energy savings were reached. The overhead due to computa-
tion—although still relatively small—can reach 14.2 percent
of total energy consumption (see Fig. 10), and decrementing
this value in 1mJ further helps to improve the battery life.

Amore intelligent feature selectionwill drawbetter results,
reducing the maximum gap allowed of extra error. However
feature selection techniques require a deep knowledge of
data. According to the results drawn in previous figures, it
seems that it is worthwhile to calculate the trade-off between

accuracy loss and energy savings. We aim to tackle this issue
in our futurework from an energy efficiency perspective.

5.6 Comparison with On-Node Activity Recognition
Alternatives

On the contrary to the problem discussed all along this
work, there might be applications where the motion data
are not necessary to be transmitted and activity recognition
is preferred to be done on sensing node and only the recog-
nized activity is sent to the back-end. The assumptions in
these applications are totally different from ours. These will
benefit of a low power consumption mainly due to the
reduction of data transmission, but motion data will not be
available in the back-end for other purposes—such as visu-
alization on further computation.

On-node activity recognition can be implemented in differ-
ent scenarios: i) over uncompressed data or ii) over compressed
data. Therewill be threemajor processingmodules in the archi-
tecture of scenario (i): fine-grained feature generation, fine
grained node localization and fine grained-activity recognition.
The architecture of scenario (ii) would be similar to the one pro-
posed for our adaptive temporal compressed sensing method-
ology in Fig. 1c, but substituting the Measurement Matrix for a
coarse-grained activity recognition module. Both scenarios
remove all the processing modules in the Extreme-end unit. In
the following lines we show the energy consumption and sav-
ings of these two alternatives. The accuracy of these implemen-
tationswill be commented aswell as shown in Table 8.

On-body node localization and on-node activity recogni-
tion can be implemented using Random Forest algorithms on
the sensing node. Please, note the reader that 30 features are
extracted/generated for further processing on-node, and so,
henceforth we assume that size and consumption of the
trained Random Forest algorithms for both processes—on-
body node localization and on-node activity recognition—-
are similar and both consume 0:5 mJ as seen in Table 7 (an
extra consumption overhead of 0:5mJ is imposed by the on-
node activity recognition).

Consumption due to data transmission is 0:1 mJ in both
scenarios. This is negligible compared with the consump-
tion of our approach due to only the label of the activity is
sent to the back-end once every 5 seconds (to be comparable
with our results).

Scenario (i): if feature extraction is carried out over
uncompressed data, the feature extraction process will con-
sume considerably more energy. In this scenario the con-
sumption is the same independently of the localization. The
average total energy saving increases 17.2 points from 48.7
to 65.9 percent compared to our proposal. The average accu-
racy, will be the one expected for the Baseline solution 98.2
percent (see Table 5).

TABLE 7
Average Processing Energy Consumption per Second p for#f ¼ 30 and#f ¼ 6 Features

Location SF"ðmJÞ
FG"ðmJÞ NL"ðmJÞ

ST"ðmJÞ MM"ðmJÞ p#f¼30ðmJÞ p#f¼6ðmJÞ "p 6
30

Savings
ð%Þ

f30 f6 f30 f6

T 4.0 3.4 2.9 0.5 0.6 0.2 0.8 4.7 4.3 8.5
RA 2.8 2.4 2.0 0.5 0.6 0.2 0.6 3.5 3.2 8.6
LA 2.9 2.5 2.2 0.5 0.6 0.2 0.6 3.6 3.4 5.6
RL 5.9 4.1 3.2 0.5 0.6 0.1 1.1 5.7 4.9 14.0
LL 6.9 4.9 3.8 0.5 0.6 0.1 1.4 6.8 5.8 14.7

Naive 6.9 - - - - - 1.4 - - -

Fig. 11. Histogram of features selected for the best GE solutions in the
optimization problem #1.
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Scenario (ii): the feature extraction module in this scenario
consumes the same than in ours. The average energy saving
is 74.4 percent, which is considerably higher than the ones
achieved for our proposal and on-node dine-grained AR.
However, when we apply activity recognition over sparse
data (i.e., coarse-grained AR), we should expect a reduction
in the accuracy. Table 8 lists a comparison of accuracy of AR
(aAR). Accuracy drops down to 88.2 percent, and it is worth-
while to mention that this level does violate our 5 percent
threshold on accuracy decline (remember the reader that our
adaptive temporal compressed sensingmethodology reaches
95.7 percent average accuracy in the back-end).

As aforementioned, the comparison of the methodology
defended in this paper with the two alternatives that imple-
ment on-node activity recognition is not fair, as the assump-
tions and applications are totally different. The achieved
increments in energy saving are accompanied by loosing
the original motion data in the back-end, and a possible
reduction in the accuracy.

6 DISCUSSION

A variation of the proposed system can be developed with-
out on-node computation where the signal type detection
and on-body node localization are performed on the back-
end and the feedback are transmitted to the sensing node
for adjustment of compression ratio. The main benefit of
this alternative approach is the elimination of processing
overhead on the local node. However, the additional cost of
constant transmission of feedback from back-end to the
sensing node must be taken into account. In addition, the
practical limitations that this alternative approach poses on
the system makes it less favorable in many real-world appli-
cations of wearable activity recognition. The constant and
real-time dependability of this approach is often not afford-
able. There are two reasons for this argument:

i) Assuming constant connectivity is too optimistic.
Many wearable devices rely on close-range, low-cost
communication technologies such as BLE, and are
operated by humans in highly mobile settings. These
system often buffer the data, when out of range of
the central node, and transmit it once the central
node become reachable.

ii) In practical settings, frequent sensor data/feedback
transmission is not favorable due to its large power
consumption. Many of more recent wearable tech-
nologies such smart-watches offer multiple means of
connectivity such as LTE, WiFi and BLE. Efficient
applications should aim to maximize their transmis-
sion on less costly links by locally storing data until a
reliable and cheap connection become available. As
a result, we argue that, with comparable overall
energy cost, the proposed approach is far more prac-
tical than the aforementioned alternative because it
does not need to transmit sensor data (since it does
not rely on external feedback).

In our methodology we stated a 5 percent extra error as a
quality criterion proportional to the original baseline accuracy
for activity recognition (AR). The parameter �th in Eq. (11) is
defined to ensure an acceptable performance and avoid over-
minimization of sensing rates at the cost of end-result accu-
racy. It can be viewed as a tuning parameter that can be
adjusted by an inference drawn from the domain knowledge
(e.g., given the accuracy of the baseline activity recognition
algorithm, what is the lowest acceptable accuracy that your
application will consider acceptable?). It is worthwhile to
mention that larger thresholds will result inmore power opti-
mization but will allow for significant performance decline.
On the other hand, excessively small thresholdswill not allow
for significant data sensing optimization and therefore are not
desirable in energy stringent applications.

7 CONCLUSION

The proposed methodology solves, through a novel adap-
tive temporal compressed sensing technique, an important
problem of the monitoring devices in the paradigms of the
MCC and RHM: battery consumption due to excessive wire-
less transmissions. In this work we apply our methodology
in a physical activity recognition problem, but the system is
extensible to any other application of the IoT where power
efficiency is an obstacle. Utilizing metaheuristic optimiza-
tion techniques based on GE, our proposal achieves energy
savings in transmission of up to 81.2 percent, with negligi-
ble energy overhead in the monitoring devices, which leads
to global savings of up to 61.0 percent.

Fig. 12. Absolute value of the matrix of correlation of features for each location considered. The lighter the color, the higher the correlation.

TABLE 8
Energy Consumption, Energy Savings

and Accuracy for On-Node AR Scenarios

On-node
AR

Location sðmJÞ pðmJÞ tðmJÞ "Total
(mJ)

"Tot:Sav:
(%)

aARð%Þ

T 13.4 4.4 0.1 17.9 74.5 91.0
Coarse- RA 13.4 3.4 0.1 16.9 76.0 84.1
grained LA 13.4 3.5 0.1 17.0 75.8 91.2

RL 13.4 5.1 0.1 18.6 73.5 87.0
LL 13.4 5.9 0.1 19.4 72.4 87.6

Fine- All 13.4 10.5 0.1 24.0 65.9 98.2
grained
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The proposed framework performs coarse-grained on-
body sensor localization and unsupervised clustering algo-
rithms are employed to autonomously reconfigure com-
pressed sensing ratios ranging from 42.8 to 77.4 percent on
average for different on-body node localization. With this
approach, we achieve significant accuracy levels between
87.7 and 90.2 percent when performing fine-grained activity
recognition in the back-end computing unit (e.g., a smart-
phone or a data center).

The proposed optimized adaptive temporal compressed
sensing methodology has a bounded error of 5 percent over
the baseline, and reaches higher energy savings when com-
pared with the state-of-the-art: a naive compressed sensing
approach with invariable compression ratio. A coarse-
grained on-body sensor localization—based on a Random
Forest—is performed and it has been shown that the error in
node localization is not propagated to the fine-grained activ-
ity recognition in the back-end unit.

An additional study about the reduction of the number
of features has been carried out. Preliminary results showed
that, after our feature optimization, we can achieve up to
14.7 percent energy savings in computation, which further
contributes to an extended battery life.
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