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Abstract— The utility of wearable sensors for continuous gait
monitoring has grown substantially, enabling novel applications
on mobility assessment in healthcare. Existing approaches for
gait cycle detection rely on predefined or experimentally tuned
platform parameters and are often platform specific, parameter
sensitive, and unreliable in noisy environments with constrained
generalizability. To address these challenges, we introduce
CyclePro,1 a novel framework for reliable and platform-
independent gait cycle detection. CyclePro offers unique features:
1) it leverages physical properties of human gait to learn model
parameters; 2) captured signals are transformed into signal
magnitude and processed through a normalized cross-correlation
module to compensate for noise and search for repetitive patterns
without predefined parameters; and 3) an optimal peak detection
algorithm is developed to accurately find strides within the
motion sensor data. To demonstrate the efficiency of CyclePro,
three experiments are conducted: a clinical study including a
visually impaired group of patients with glaucoma and a control
group of healthy participants; a clinical study involving chil-
dren with Rett syndrome; and an experiment involving healthy
participants. The performance of CyclePro is assessed under
varying platform settings and demonstrates to maintain over 93%
accuracy under noisy signal, varying bit resolutions, and changes
in sampling frequency. This translates into a recall of 95.3% and
a precision of 93.4%, on average. Moreover, CyclePro can detect
strides and estimate cadence using data from different sensors,
with accuracy higher than 95%, and it is robust to random sensor
orientations with a recall of 91.5% and a precision of 99.2%,
on average.
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I. INTRODUCTION

W ITH the proliferation of wearable devices, these tech-
nologies have witnessed significant attention recently

due to their potential for a large number of applications in
healthcare and wellness [1]. By providing real-time, objective
and remote monitoring, wearable sensors have been adopted
in several application domains such as human gesture recog-
nition, in-home patient monitoring, emergency medical ser-
vices, and other motion analysis applications [2]–[4]. Physical
activity monitoring is one of the most important interven-
tions in managing chronic diseases, such as cancer, diabetes,
heart disease and mental health problems and it is suggested
that utilizing wearable sensors to track human motions can
improve the quality of life in patients with these kinds of
diseases [5]–[7].

Human gait recognition and analysis is one aspect of physi-
cal activity monitoring and is possible through tracking human
motion. Gait analysis reflects one’s mobility and motion pat-
terns and properties. Gait analysis can be used to examine
the changes of health conditions in human subjects [8], [9].
Therefore, a number of researchers have applied gait analysis
approaches in the study of motion disorders caused by var-
ious diseases, such as Alzheimer [10], Parkinson [11], [12],
Glaucoma [13]–[15] and other visual impairments [16]. Thus,
applications of gait analysis using wearable sensors in such
areas has increasingly expanded and many researchers have
focused on gait analysis, gait phases extraction, and cycle
segmentation [17], [18]. However, one of the primary and
fundamental steps of gait analysis is to detect gait cycles,
which is the focus of this article. Efficient detection of strides
can lead to extracting other important gait parameters such as
mean stride speed and cadence.

Multiple algorithms have been proposed for gait cycle
detection from wearable sensor signals [10], [18]–[30]. How-
ever, there have been different limitations associated with
some of the existing methods. One of the limitations is the
required manual observation, used to determine the alignment
of multiple axial signals according to the orientation of sensor
device, which limits automatic and real-time gait analysis. It is
needed to manually observe the physical alignments of 3D
sensor signals that is necessary to pick one specific dimension
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for further analysis (i.e., vertical axis). For example, in one
study [19], only x-axis acceleration signal (corresponding to
the vertical direction in this case) is used in the analysis,
because it is more discriminant as compared to y- and z-axis
signals. Another type of manual observation aims to seek
for the most appropriate variables needed in the algorithm
and manually tune a threshold or inner parameter of the
algorithms for each experimental setting. For example, the gait
recognition method introduced in [20] requires visual detection
of the first zero point in the preprocessed vertical acceleration
signal. Also, some methods depend on the orientation of the
wearable sensor device [18], [30]. Furthermore, many current
algorithms use empirically predefined thresholds or exper-
imentally tuned platform parameters [10], [21]. Although
such gait cycle detection methods have been proven to be
well-designed and practically accurate, they require fixed and
predefined thresholds or parameters of gait detection platform
tuned to best fit the certain experimental setting and require
retraining of the gait monitoring algorithms when a new sensor
platform is utilized by the end users. Also, some methods are
based on standard peak detection, in which a threshold for
signal peak is needed for cycle detection [22]. In addition,
some methods are designed to use data from a specific type
of sensor or group of sensors [18], [23], [24], [30] or data
from both legs [25]. Moreover, some past work has used cross-
correlation and dynamic time warping for gait detection, which
needs a reference segmented gait signal [26]–[28].

To achieve a reliable and generalizable gait cycle detection
approach and to overcome the aforementioned limitations,
it is necessary to develop novel techniques that can work
effectively in uncontrolled environments, which is the focus
of this article. In this way, the methodology would not
depend on observations, thresholds, type of sensor, or platform
characteristics, and can learn the model parameters and adjust
them with changes of sensor platform properties; such as:
bit resolution, sampling frequency, signal dynamic range and
sensor orientation.

In this article, we introduce CyclePro, a generic, computa-
tionally simple, and platform-independent framework for gait
cycle detection. The main contributions in this article can be
summarized as: (1) we introduce a reliable stride detection
and cadence estimation approach, which can be applied to
signals from different sensor types and is robust to random
sensor orientations with no dependency on manual observa-
tions required in prior studies; (2) the proposed framework
leverages physical properties of human gait to be able to
learn model parameters; (3) we develop several algorithms
for template generation, template matching, and optimal peak
detection to find repetitive patterns and strides within the
motion sensor data; (4) we demonstrate the robustness of
our approach using three datasets collected with glaucoma
patients, Rett patients and healthy participants. Moreover, our
approach demonstrates high (> 90%) accuracy under noisy
signals, changes in sensor orientation, and varying sensor type,
bit resolution, signal amplitude and sampling frequency of the
signal.

A preliminary version of this manuscript was presented
in [14] focusing on considering human physical constraints

Fig. 1. High level overview of sensor data processing pipeline in the CyclePro
framework.

for calculating gait parameters using template generation and
cross-correlation. The current manuscript has been extensively
extended and enhanced, in order to achieve the optimal
gait parameters by refining the preliminary results calculated
using the steps in [14]. Moreover, the robustness of the
new algorithm is improved and tested in regards to various
platform factors and also, new datasets were used for further
validations.

The developed aspects of CyclePro in comparison to [14]
are in multiple fronts: The previous work was based on
template generation and cross-correlation, while in this man-
uscript, in addition to steps based on template generation
and cross-correlation, a new framework of three-step optimal
stride detection that was inspired by Otsu’s algorithm was
introduced, and it is proved to achieve a higher precision
overall than the previously designed algorithm; more clinical
data is collected with additional participants with glaucoma
for validation of the algorithm’s performance; a new clinical
experiment is conducted using a customized foot-worn sensing
systems to collect gait data from Rett Syndrome patients to
show the robustness of algorithm to source of data; a new
experiment is conducted to collect data simultaneously from
six Shimmer nodes attached on lower limbs with different
orientations during a normal walk test, for the purpose of
evaluating the performance of our algorithm on the random
orientated device without manual observations; in addition to
the platform parameters tested in the previous study, we modi-
fied the original clinical dataset of Glaucoma study to simulate
several signal sets with low bit resolutions in order to test the
potential of our algorithm to be utilize in the wireless sensor
system with power constraints.

II. CYCLEPRO FRAMEWORK OVERVIEW

As described above, stride detection is central to monitoring
human gait. As soon as gait strides are accurately detected, gait
parameters such as the number of strides, walking speed, and
cadence can be acquired subsequently. In this article, we focus
specifically on stride detection and cadence estimation.
Figure 1 presents a high level overview of the processing
pipeline for CyclePro framework.
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TABLE I

PHYSICAL CONSTRAINTS OF NORMAL CADENCE

A. CyclePro Architecture

The input signals of CyclePro are collected from wearable
sensors mounted on both feet or embedded in shoes. These
body sites are suggested to be effective for gait monitor-
ing [31]–[33]. The wearable sensors include motion sensors
such as accelerometer and gyroscope, as well as electronic
sensors like force sensitive resistor (i.e. pressure sensor). The
proposed algorithms in CyclePro contains four major phases:
• Sensor Fusion: Calculating the Signal Vector Magnitude

to reduce the complexity in the raw signals.
• Template Generation: Generating templates of one gait

cycle (stride) using the Signal Vector Magnitude, by auto-
matically computing the required window-size for repre-
senting a template.

• Pattern Identification: Capturing repetitive patterns in the
signal using a normalized cross-correlation approach by
taking into account the kinematic properties of human
gait.

• Optimal Stride Detection: Detecting the strides accurately
using algorithms which automatically compute required
window sizes as well.

In the rest of this section, we first introduce several
kinematic constraints of human gait, and then discuss the
contribution of individual signal processing modules to the
robustness of the proposed framework. In the end, we describe
each of the aforementioned modules in detail, and also explain
the cadence estimation approach used in this study.

B. Kinematic Constraints

Given the fact that biometric gait behavior is one type of
physical motion, it is constrained to several physical condi-
tions. Such restrictions can be used in gait monitoring given
the correlation between kinematic measurements and spatio-
temporal signals generated during ambulation. Table I outlines
several kinematic constraints for normal cadence measured by
prior clinical research [34]–[36].

We utilize these statistics of normal walk cadence
(strides/minute) to automatically adjust the internal parameters
of our algorithm. As it will be discussed later in this paper,
these parameters define the lower bound on the size of anchor
window and distance filter.

C. Robustness Features

In order to explain the robustness property of CyclePro,
we highlight four methods used in our algorithm design as

TABLE II

METHODS APPLIED IN CYCLEPRO ALGORITHM DESIGN

TABLE III

MAJOR PROPERTIES OF CYCLEPRO FRAMEWORK

ATTRIBUTED TO METHODS IN TABLE II

shown in Table II. Applying these methods in CyclePro results
in six properties of the proposed framework, which are denoted
as the labels shown in the third column of Table II. The
explanation for each property is listed in Table III.

III. CYCLEPRO FRAMEWORK DESIGN

This section provides detailed explanation of major phases
in the CyclePro framework, as it is mentioned in the previous
section. For visualization purpose, Figure 2 shows the step-
wise results of signal processing in CyclePro using a sample
accelerometer signal.

A. Sensor Fusion

As mentioned previously, the first step of the algorithm is to
calculate Signal Vector Magnitude according to the sensor sig-
nals collected from three-dimentional accelerometer or three-
dimentional gyroscope. The computation of Signal Vector
Magnitude is defined by equation (1). For signals collected
from pressure sensor, the same equation can be applied with
x = y = z.

SignalV ector Magni tude =
√

x2 + y2 + z2 (1)

As mentioned previously, there are several advantages of
using the Signal Vector Magnitude instead of the original
sensor signals. For instance, the Signal Vector Magnitude
reflects the overall intensity of user’s movement as a sequence
of positive values, and hence, it highlights the cyclic patterns
while neutralizing the noise in uni-axial signals. In addi-
tion, it is not necessary to distinguish each individual axial
signal even if the sensor orientation changes. As a result,
the algorithm does not need manual annotation for the physical
alignments of three axial signals, and the reduction of the
input dimensionality also helps the system scalability and
real-time processing applications. Figure 2 shows the Signal
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Fig. 2. Evolution of the sample input accelerometer signal in each step of CyclePro framework, showing the final detected strides in Final Results
(red circles showing detected peaks and blue asterisk representing the inserted minimum valley point).

Vector Magnitude of a randomly selected experimental signals
recorded using an accelerometer sensor.

B. Template Generation

In this step, the templates of repetitive pattern with respect
to one gait cycle are generated in Signal Vector Magnitude
signal. A template is a signal segment determined by two con-
secutive minimum salient points, and each template accounts
for approximately one gait cycle. Salient points are data
samples with local minimum amplitude, and the procedure of
selecting these points is described in [14]. For this purpose,
we use salience point vector. In this vector, there is one value
for each data sample in the signal sequence, which denotes
the number of following consecutive data samples with larger
amplitude than that of the current data sample. Salience point
vector is used to detect salient points, which are data samples
with local minimum amplitude and have been separated by
gait events covering one step.

After generating templates using obtained salient points,
we compare the standard deviation of each template with the
entire signal sequence, and select the top three templates which
have the smallest difference in standard deviation. Figure 2
shows one of the three automatically selected templates from
the given Signal Vector Magnitude signal.

C. Pattern Identification

In this step, the cross-correlation function is adopted, which
takes each selected template as the input, and continuously
estimates the similarity between each template and the entire
Signal Vector Magnitude signal sequence. CyclePro employs
normalized cross-correlation to bound the maximum value
to 1. Therefore, the output is not sensitive to the changes of
amplitude range in original signal. Moreover, this approach
enhances the overall reliability of algorithm, as mentioned
in Table II and III. Equation (2) describes normalized cross-
correlation function used in this phase, where N and T denotes

the number of data samples in the signal sequence and the
template respectively, while As( j) and At ( j) denotes the
amplitude of the j th data sample in the signal and in the
template, respectively.

C(i) =
∑T

j=1 At ( j)As( j + i)
∑T

j=1(At ( j))2
, i ∈ [0, N − T ] (2)

The output obtained from this step is shown in the box
named “Cross-Correlation” in Fig. 2 using a sample signal.

D. Optimal Stride Detection

The output sequence of normalized cross-correlation is then
used as the input for optimal stride detection module. First
off, this module recursively finds local maximum data points
that have higher amplitude than the neighboring points in the
sequence. The selected data points are then passed through
three steps for the final stride detection. For clarification,
the terms and notations listed in Table IV are used throughout
the rest of this section.

The three steps in this module includes anchor window,
distance filter, and optimal separator. We elaborate each of
these steps as follows.

1) Anchor Window: In the first step, an anchor window
is defined as a dynamic window that iteratively moves in
the list of extracted local maximum data points, from the
first data point to the last one. In each iteration, the anchor
window algorithm projects a window with certain size from
the starting data point, and seeks for the data point in the
sequence with the highest cross-correlation result within this
window. It then removes other local maximum points obtained
previously which lies inside the current window, and projects
another anchor window from the next local maximum data
point. Algorithm 1 presents the pseudocode for this step.

The size of the anchor window is determined by the
parameter Nstep according to the average value of normal
walk cadence listed in Table I. Considering the fact that one
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TABLE IV

NOTATIONS USED IN STRIDE DETECTION ALGORITHMS

Algorithm 1 Anchor Window Algorithm
Input: list L of local maximum samples in the cross-
correlation output
As← L1
for j is 2→ |L | do

Ap ← As
while | As, L j | < Nstep do

Ap ← the sample point with larger amplitude between
current Ap and L j
j ← j + 1

end while
Add Ap into Pout
As ← L j

end for
Output: Pout the list containing the peak sample point of
each anchor window

stride usually contains two steps, the number of data samples
required to capture one stride needs to be twice of the number
used for one step. Therefore, we use the latter number to
restrict the interval of each possible stride under search. The
box named “Anchor Window” in Fig. 2 shows the result of
this step, where the points marked with red circle indicate the
selected local maximum points.

2) Distance Filter: This step is developed to further exam-
ine those local maximum points obtained from the previous
step. We use equation (3) for the filtering purpose, which
indicates the number of data samples used to capture one stride
in the movement that is more likely to be running than normal
walk.

Nstride = 60× f

Cover
(3)

Since Nstride is used to represent running, it can refer to
a lower bound of the temporal distance between every two
consecutive strides of a normal walk. Distance filter works
in this way that, for each pair of consecutive local maximum
points in Pout, if the number of data points in the sequence

Algorithm 2 Optimal Peak Separator Algorithm
Input: list P of peak sample points returned by distance
filter, minimum valley point v
P ← sort P according to sample values in descending order
Add v into P
n ← the number of sample points in P
var ← σ 2

1,n =
∑n

i=1
(a(Pi)−μ)2

n−1
k ← 1, b← n
for k is 1→ n do

if σ 2
1,k + σ 2

k+1,n < var then
var ← σ 2

1,k + σ 2
k+1,n

b← k
end if

end for
Pfinal ← P1,b
Output: Pfinal the list of selected final peaks

between them is less than Nstride, only the one with higher
value in this pair is selected for the later procedure, whereas
another one is filtered out. The result of this step is shown in
the box named “Distance Filter” in Fig. 2.

3) Optimal Peak Separator: This step aims to automatically
determine the final peaks (local maximum) based on the
similarity determined by the cross-correlation results. To avoid
any fixed threshold, we design an optimal separator algorithm
inspired by Otsu’s method, which is commonly used in image
processing for the purpose of image segmentation [37]. This
method exhaustively derives an optimal threshold to minimize
the sum of inner variance over all the image segments and
thus, to separate them. It can also be used over the results of
filtered local maximum points, to separate valid and invalid
peaks for final output.

However, since human movement pattern changes incon-
spicuously within a short time interval, there can be slight
fluctuations in the amplitude of adjacent data samples, which
would affect the results of cross-correlation. Therefore, by only
considering the inner variance to separate the points, we may
reject a valid peak associated with a real stride due to its
slightly lower cross-correlation result than the others. In order
to address this issue and reduce the false negative rate,
we insert a point named “minimum valley” into the filtered
local maximum points as the baseline, to balance the compar-
ison of the inner variance. Minimum valley is the data point
with the smallest value among all the valleys in the sequence,
and it is denoted as variable v. The pseudocode for optimal
peak separator is presented in Algorithm 2.

To use this algorithm, the resulting local maximum points
from distance filter is first sorted according to the cross-
correlation results, and then, an exhaustive search for an
optimal separation is applied with the goal of minimizing the
sum of inner variance within the two separated data point
partitions.

As shown in the box named “Optimal Separator” in Fig. 2,
the input for optimal peak separator step includes the points
marked with circles (red and blue), which represent the peaks
remained after distance filter step. The point marked with
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asterisk represents the inserted minimum valley point. When
the sum of inner variances within the two partitions reaches
its minimum value, the blue circle-marked point and the
minimum valley point are separated from the rest of data
samples as a new group; therefore, the output is a collection of
data samples marked with red circles. The final output of stride
detection is shown in the box named “Final Result” in Fig. 2,
and each peak is associated with one stride recorded in the
Signal Vector Magnitude signal.

E. Cadence Estimation

After stride detection phase, we further estimate cadence
based on the intervals representing the gait cycles. The cadence
estimation phase follows the equation (4), where Nintvl denotes
the number of data samples within two consecutive valid
peaks.

Cadence = 60× f

Nintvl
(4)

This equation calculates the cadence for every two consec-
utive valid peaks, and then the average value is computed as
the cadence for the input signal. Furthermore, as mentioned
at the beginning of this section, three different templates are
generated and used by the algorithm, which results in three
sets of results in the end. Therefore, the final set of results
presented by CyclePro is the average of the results achieved
by each template.

IV. EXPERIMENTS

For validation purpose, we conducted two clinical experi-
ments in collaboration with medical institutes [15] and one
in-lab experiment for data collection. The experiments were
approved by the Institutional Review Board (IRB) of each
participating institution under these reference numbers: glau-
coma trials under IRB#13-000804 and Rett syndrome trials
under IRB#201801242. Each experiment was done in multiple
trials and the final results were presented as the average over
different trials. In addition, to measure the performance of
CyclePro with changes in the sensor platform, we modified
one dataset to simulate a variety of sensor parameter settings.

In order to evaluate the performance of CyclePro in each
experiment, we used recall and precision based on the number
of strides recorded in the sensor signal that were recognized
correctly, and they are defined in equations (5), (6).

Precision = T P

T P + F N
(5)

Recall = T P

T P + F P
(6)

where T P is the number of real strides recognized correctly,
F N is the number of real strides that were not recognized, and
F P is the number of strides that were not real but recognized
incorrectly by CyclePro. Therefore, the corresponding error is
related to presence/absence of any real strides in the detected
strides.

The rest of this section introduces the experiments and
dataset acquisition.

Fig. 3. Clinical setting used for data recording in glaucoma trial, consisting
two shimmer sensors mounted on each shoe.

A. Glaucoma Trials

The first dataset was collected in a clinical study from
8 healthy participants and 8 patients with glaucoma eye-
condition. Glaucoma is the second leading cause of blindness
in adults, and it appears in different types [38]–[40]. Since
glaucoma affects patient’s vision in various levels, patient’s
quality of life can be harmed significantly. For example,
it is known that glaucoma patients walk slower and have an
increased risk of falling compared to typical sighted individ-
uals [41]. Therefore, their gait behavior could be affected
and this is the reason for considering this dataset in this
manuscript.

We conducted a randomized clinical experiment involving
8 glaucoma patients (age 63.7±8.57, height 168.73±7.13 cm)
and 8 age-matched healthy control (age 60.7±4.99, height
161.96±8.43 cm) [15]. All participants were asked to perform
a 10-Meter-Walk test, which is a simple, effective and widely
used tool to evaluate gait patterns [42], while two Shimmer
(Sensing Health with Intelligence, Modularity, Mobility and
Experimental Reusability) [43] sensor nodes were mounted
on the top of their shoes. Signals were continuously gathered
from tri-axial accelerometer (MMA7260Q) integrated in each
Shimmer device. We used a sampling frequency of 102.4Hz,
and the sensitivity range was set to ±2g. Figure 3 shows
the experimental setup for this test as well as a shimmer
sensor.

The recorded datasets were manually annotated by syn-
chronizing with video recordings to create ground truth data
for validation of experiments’ results. We used the original
signals to measure baseline accuracy of our gait monitoring
framework. Furthermore, to test the robustness of CyclePro
on the changes of sensor platform variables as well as noisy
signals, we modified the original signals to acquire several
datasets. We changed sampling the dataset by up-sampling and
down-sampling of original signals. Furthermore, we changed
its amplitude and bit resolution and added different levels
of noise to the original signal. The list of various tested
parameters is presented in Table V, where the asterisk denotes
the parameter value in the original dataset.

It should be noted that bit resolution refers to the bit number
of Analog to Digital Converter (ADC) in the microcontroller of
a sensor for representing output. Sensor nodes normally have
a severely limited energy budget [44]. Therefore, we modified
original acceleration signals by truncating the binary raw
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TABLE V

NEW DATASETS SIMULATION FOR ROBUSTNESS VALIDATION
(ORIGINAL VALUES ARE MARKED WITH ASTERISKS)

Fig. 4. Clinical setting of the shoe-integrated platform used for data recording
in Rett trial, consisting accelerometer, gyroscope and pressure sensors in each
shoe.

signals in order to simulate the digital readout with lower bit
resolutions.

B. Rett Syndrome Trials

The second dataset of human gait is collected in another
clinical study for patients with Rett Syndrome, in order to test
the algorithm on a patient with a different health situation, and
when data is recorded in a new experimental setting using a
different sensor platfrom. Rett Syndrome is a rare neurological
disorder that affects almost every aspect of one’s daily life,
such as breathing, eating, learning and walking with a wide
range of disabilities from mild to severe [45]–[48]. Patients
suffering from Rett Syndrome are known to have difficulties
in walking.

This dataset was recorded in an experimental setting using
an integrated sensors device and the gait data are gathered
using three different sensor types: accelerometer, gyroscope
and pressure sensors. The device was mounted on a pair of
shoes and was tested by a 14 years old female patient, who had
mild symptoms and thus, she was able to walk independently.
We developed the hardware, software, and algorithms for
collecting and analyzing gait data using a shoe-integrated
platform, as shown in Fig. 4.

As shown in Fig. 4, five pressure sensors are implemented
in the designed platform to gather related data of patients
for different analysis and the data from sensor number one
were used in this article. The inertial sensors platform allows
for real-time collection of kinematic data during clinical
experiments. Signals generated from sensing units are first
sampled by the micro-controller while the sampling frequency
was set to 26Hz for this experiment. Then, the collected data
samples are transmitted to a computer from each of the shoes
separately. In addition, a Windows-based user interface was

Fig. 5. Recall and precision values for stride detection using CyclePro, when
applied over glaucoma dataset, (subj1 to subj13 stand for each of individual
participants).

developed for real-time data collection and visualization. For
clinical usage, our user interface also provides video record-
ing function in order to simultaneously capture participant’s
movement during the experiment. The video recordings were
automatically synchronized with the wearable sensor signal
readings, which was used to annotate the data for validation
of results. In this way, we could obtain ground truth data such
as the time when a gait cycle is initiated, when the person is
walking and when the experiment ended.

In this dataset, the 10-Meter-Walk test was used to record
signals from sensors. Again, for further analysis we change
the sampling frequency and noise level for accelerometer data
of this dataset. In addition to original frequency of 26Hz,
we tested 13Hz and 52Hz frequencies. Also, we added noise
with SNR levels described in Table V to the original signal to
test CyclePro’s performance.

C. Sensor Orientation Test

The third dataset includes gait data recorded by an
accelerometer from 4 normal participants and it is generated
during a normal walk test. This dataset is used to evaluate the
performance of CyclePro on random sensor orientations, since
motion sensor readings vary on different directions.

To evaluate the impact of sensor orientations in addition
to previous parameter settings, we conducted an independent
normal walk experiment with healthy participants. For this test,
each participant was asked to walk in a well-lit hallway for
20 meters at their normal speed, while three Shimmer sensors
were attached on each of the lower shanks with different
orientations. Four healthy participants (age 25.3±2.38, height
176.5±2.87 cm) were involved in this test and the accelerom-
eter used in this test had the same platform settings as the
one used in the first test. Acceleration signals were collected
simultaneously from six Shimmer sensor nodes attached on
bilateral lower shanks, while, three Shimmer devices were
attached on each limb, and they were aligned with vertical,
horizontal and oblique directions respectively. The datasets

Authorized licensed use limited to: Washington State University. Downloaded on December 09,2020 at 05:23:07 UTC from IEEE Xplore.  Restrictions apply. 



3758 IEEE SENSORS JOURNAL, VOL. 19, NO. 10, MAY 15, 2019

Fig. 6. Baseline results of cadence estimation using glaucoma dataset.

were manually annotated to create ground truth data for
validation of results.

V. RESULTS

A. Baseline Performance

For the first dataset, a total number of 811 strides were
recorded from two accelerometers for 16 participants during
the 10-Meter-Walk test. We first used the original dataset of
glaucoma trial to evaluate the basic performance of CyclePro
for stride detection. For evaluation purpose, the recall and
precision, defined in equations (5)-(6), are calculated based
on the number of strides recorded in the sensor signal that
were recognized correctly, while the true real strides were
determined by manual annotations done over the dataset from
sensors.

The recall and precision over the entire dataset were 96.55%
and 99.11% respectively, and our algorithm can achieve a
recall above 90% and a precision above 95% for individual
participants, as it is shown in Fig. 5 as a radar chart.

In this figure, subj1 to subj13 stand for each of individual
participants and the value for recall and precision for each par-
ticipants is demonstrated using circles with various radiuses.

We then evaluated the baseline performance of cadence
estimation for each participant individually by comparing the
results against manual annotations, as it is shown in Fig. 6.
The accuracy is defined as the precision of the estimated result
with respect to the annotated value. Figure 6 shows the average
accuracy as well as the variations for each participant over
different trials. The results demonstrate that CyclePro achieves
an average accuracy above 97% in cadence estimation for both
healthy and visually-impaired participants.

B. Performance Using Different Types of Sensors

To evaluate the performance of CyclePro on the data gener-
ated by a new platform consisting of different types of sensors,
we used the second dataset collected from patients with Rett
Syndrome. This dataset was gathered during a 10-Meter-Walk
test including three trials. Figure 7 shows an example of signal
sequence generated by accelerometer, gyroscope and pressure
sensor in one trial, as well as a sample output of CyclePro
using one template of the signal sequence.

It can be observed that all the three signal sequences have
a periodic nature, which corresponds to the repetitive gait

Fig. 7. An example of signal sequence collected in one Rett trial shown
in sub-figures (a) to (c) and the corresponding output of CyclePro shown in
sub-figure (d). Circles show detected local maximum points and crosses are
for local minimum points.

TABLE VI

RESULTS OF CADENCE ESTIMATION PER SENSOR

TYPE USING RETT DATASET

cycles. Similar to our previous experiment, we first measured
the baseline performance of CyclePro for stride detection by
estimating the precision and recall on the data gathered by
different sensors separately. The results are presented in Fig. 8
for both feet.

The results indicate that for all three sensors data, CyclePro
keeps its high performance with the recall over 95% and
the precision over 90%. Next, the baseline performance of
CyclePro for cadence estimation according to different sensors
was also evaluated, and the results are presented in Table VI.
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Fig. 8. Results of stride detection per sensor type using Rett dataset, for left
and right feet shown in left and right plots respectively.

Fig. 9. Results of stride detection on datasets with parameter changes
simulated using glaucoma dataset.

According to this table, the performance of CyclePro for
cadence estimation remains over 90% while using different
types of sensors.

C. Robustness to Platform Parameter Changes

In the following three subsections, the robustness of
CyclePro to the changes in sensor parameters is assessed.
We evaluated the performance for stride detection and cadence
estimation on each of the simulated datasets mentioned
in Table V, and Fig. 9 shows the corresponding results in
terms of recall and precision.

In addition, the accuracy for cadence estimation on the
simulated datasets with the minimum and maximum parameter
values, are reported in Table VII and explained in the following
subsections.

1) Bit Resolution Changes: A low bit resolution of wire-
less sensor output can reduce the power consumption, and
hence, enhance the functional period of body sensor net-
works (BSN) [49]. Furthermore, bit resolution is a platform
parameter as well as an algorithm specific parameter. Thus,
we evaluate the robustness of CyclePro with changes in bit
resolution of the signal. The leftmost plot in Fig. 9 shows
the result of stride detection on the changes of bit resolution,
which were simulated using the first dataset collected from
glaucoma patients and control group. Comparing to the per-
formance on the original dataset (16-bit), CyclePro maintains
a precision above 93% and a recall above 96% and with lower
bit resolutions, the drop in the accuracy is less than 6%.

By considering bit resolution changes shown in Table VII,
the results demonstrate that when the number of bits used to
represent raw signal are reduced to 8, CyclePro still achieves
an average accuracy of 96.73% for cadence estimation. More-

TABLE VII

RESULTS OF CADENCE ESTIMATION ON DATASETS WITH PARAMETER
CHANGES SIMULATED USING GLAUCOMA DATASET

over, the variance in the accuracy of cadence estimation on the
four simulated datasets with different bit resolutions is 1.49.

2) Sampling Frequency Changes: We also tested CyclePro
using several datasets obtained by upsampling/downsampling
the original sensor siginals (102.4Hz) in the first dataset col-
lected during glaucoma trials. The middle plot in Fig. 9 shows
the stride detection performance on the changes; CyclePro has
a performance of 95.19% recall and 99.10% precision even
though the sampling frequency reduced to 17Hz. The drop in
the accuracy comparing with baseline performance is less than
2% for all the datasets.

The results listed in Table VII indicate that, CyclePro main-
tains an average accuracy of 98.18% for cadence estimation in
the condition of low sampling frequency. The variance of the
performance is 0.2 over all the datasets with different sampling
frequencies.

In addition, we changed the sampling frequency of
accelerometer data in the second dataset collected from Rett
Syndrome patient, from 26Hz to 13Hz and 52Hz, separately.
The results show that, CyclePro achieves an average recall
of 92.3% and precision of 100% for stride detection, and
an average accuracy of 98.24 for cadence estimation, which
further demonstrates the robustness of CyclePro.

3) Performance With Noisy Signal: Many gait monitoring
applications nowadays are not meant to be used inside labora-
tory, neither do they build upon sensor platforms with precise
settings. As a result, extra noise may be introduced in the
sensor readouts under uncontrolled environments.

To test the reliability of CyclePro in such situations,
we added different degrees of white noise into the original
signals in the first dataset collected in glaucoma trials. We then
performed CyclePro on each of the obtained datasets, and
the rightmost plot in Fig. 9 shows the performance on these
modified datasets with Signal-to-Noise Ratio (SNR) of 20dB,
15dB, 10dB and 5dB. CyclePro can maintain a recall above
95% and a precision above 98% for all these noisy signal sets.
The drop in the accuracy comparing with the baseline is less
than 2%.

The last two columns in Table VII show the results of
cadence estimation in the noisy signals. CyclePro can achieve
an accuracy above 99% and higher on noisy datasets, and the
variance among all created datasets, with different SNR shown
in VII, is 0.01.

We further added the same set of noises to the second
dataset collected from Rett Syndrome patient. The results indi-
cate that CyclePro could achieve an average recall of 92.57%
and precision of 98.07% for stride detection, and an average
accuracy of 98.62% for cadence estimation.

Authorized licensed use limited to: Washington State University. Downloaded on December 09,2020 at 05:23:07 UTC from IEEE Xplore.  Restrictions apply. 



3760 IEEE SENSORS JOURNAL, VOL. 19, NO. 10, MAY 15, 2019

Fig. 10. Results of stride detection on datasets with different sensor orien-
tations (L:left ankle, R: right ankle, V: vertical, H: horizontal, O: Oblique),
“Performance per ankle/orientation” is shown in left plot and “Accuracy per
participant” is shown in right plot.

TABLE VIII

ACCURACIES OF CADENCE ESTIMATION ON DATASETS

WITH DIFFERENT SENSOR ORIENTATIONS

D. Robustness to Signal Amplitude Changes

Due to the fact that the stride detection of CyclePro is
applied on the output of normalized cross-correlation function,
the result is not sensitive to the changes of signal amplitude
range by default. As a result, the validation of both stride
detection and cadence estimation using the datasets with
different signal amplitudes turned out to be exactly same
results with the baseline.

E. Robustness to Sensor Orientation Changes

As mentioned previously, the third experiment for data
collection was conducted on four participants in a normal walk
test, and three Shimmer sensors were attached on each of their
lower shank during the experiment. Each sensor was placed
in a different direction: horizontal, vertical, or oblique, and a
total number of 566 strides were recorded in the acceleration
signals according to manual annotation. Figure 10 shows the
results of stride detection in terms of recall and precision for
each sensor, and for each participant, separately.

In the left plot in Fig. 10, the x-axis refers to each sensor
denoted as its location and orientation. Sensors attached on
the left ankle are denoted as Left-V, Left-H and Left-O, and
sensors attached on the right ankle are labeled as Right-
V, Right-H and Right-O, respectively. Based on the results
in Fig. 10, CyclePro delivers a precision above 99.2% and a
recall above 91.5% in average for the six sensors with different
locations and orientations.

The right plot in Fig. 10 shows the accuracy of stride
detection according to different sensor orientations for each
subject. CyclePro maintains an accuracy higher than 89.5%
regardless of the differences in the sensor signals caused by
the orientation changes. The overall recall and precision of
orientation-insensitive stride detection is 93.23% and 99.68%,
respectively.

CyclePro was also tested for cadence estimation on the
datasets with different sensor orientations, and the results
were compared to manual annotations. Table VIII presents
the accuracy of cadence estimation using CyclePro on each
individual dataset generated by one sensor for one subject.
It shows that CyclePro can maintain an accuracy higher than
92% in cadence estimation for various sensor orientations. The
overall accuracy of orientation-insensitive cadence estimation
is 94.4%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we aimed to provide an accurate and com-
prehensive biometric gait examination through a reliable and
platform-independent data analysis approach. To this end,
we introduced a robust gait cycle detection framework, named
CyclePro, for stride detection and cadence estimation. Our
algorithm takes human kinematic constraints into account to
automatically adjust the framework parameters. These human
population gait norms are used in our method to eliminate the
need to tune platform parameters with any new changes. As a
result, our approach detects gait cycles with no dependency on
predefined platform thresholds or experiment-specific settings.

For validation purpose, we first demonstrated the perfor-
mance and robustness of CyclePro on gait data collected in
two clinical trials. Our goal was to assess the reliability of
CyclePro on changes in bit resolution, sampling frequency,
signal amplitude and noise level in signal, as well as its
performance on data generated by different sensors and we
used manual annotation of the data as the gold standard for
our performance evaluation. We could observe that CyclePro
can maintain a sufficient performance in various conditions
(higher than 93% precision and 95% recall for stride detection
and 96% for cadence estimation). We also conducted a nor-
mal walk experiment using randomly aligned sensor devices
and collected acceleration signals simultaneously. Using the
results,the reliability of CyclePro in the changes of sensor
orientation (higher than 99% precision and 91% recall for
stride detection and 92% for cadence estimation) could be
concluded.

As some of the limitations of previous works for gait cycle
detection are mentioned in Introduction section, we are able to
make a comparison between those and our proposed algorithm.
CyclePro does not need the alignment of multiple axial signals
according to the orientation of sensor device, or seeking for
the most appropriate variables such as first zero point, which is
a necessary step in some proposed algorithms [19], [20]. Also,
CyclePro uses human kinematic information to eliminates the
need for tuning sensor platform parameters and thresholds
based on experimental settings, which should be done is some
previous methods [10], [21]. In addition, it is not dependent
on set threshold for signal peak detection which is needed
in some proposed methods [22]. Furthermore, some designed
algorithms are specific to special types of sensor [23], [24]
which is not the case for CyclePro. Also, some methods
are dependent on data recorded by sensors worn on both
legs [25], and it is not a limitation for CyclePro. Moreover,
there are some methods for cycle detection that are based on
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cross-correlation and dynamic time warping and they need
a reference segmented gait signal [26]–[28], while CyclePro
does not need a reference signal.
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