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Abstract—Leg swelling produced by retention of fluid in leg
tissues is known as peripheral edema, which is regarded as a
symptom for various systematic diseases such as heart or kidney
failure. In current clinical practice, edema is manually assessed
by clinical experts. Such an assessment can often be inaccurate
and unreliable especially if it is made by different operators at
different times. Despite the importance of monitoring edema for
the purpose of evaluating the course of disease or the effect of
treatment, quantifying peripheral edema in a continuous and
accurate fashion has remained a challenge. In this paper, we
propose a wearable real-time platform (namely, Smart-Cuff),
which integrates advanced technologies in sensing, computation,
and signal processing and machine learning for continuous and
real-time edema monitoring in remote and in-home settings.
Given that peripheral edema is highly dependent on various
contextual attributes such as body posture, we present an activity-
sensitive approach to discard erroneous or contextually invalid
sensor data in order to meet the requirements of both energy effi-
ciency and quality of information. Examination of our hardware
prototype demonstrates the effectiveness of the proposed force-
sensitive resistor-based edema sensor (with an R* of 0.97 for our
regression model) as well as the activity monitoring mechanism
(over 99% accuracy) that provide the means to perform reliable
data sanity check on ankle circumference measurements in a
continuous manner.

I. INTRODUCTION

Peripheral edema is one of the primary symptoms of volume
overload in the body due to onset or exacerbation of a variety
of systemic diseases that could disturb cardiovascular, renal,
or hepatic system [1]-[3]. It could also emerge as a side effect
of many medications or as a symptom in venous, metabolic,
and inflammatory diseases, chronic lymphedema, post-surgery,
and pregnancy [1], [2], [4]. Edema secondary to lymphatic or
venous diseases of lower limb usually presents as a chronic
asymmetric swelling, whereas edema due to systemic diseases
such as heart, liver, and renal failure develops symmetrically
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in both lower limbs [4]. Edema occurs when lymph formation
exceeds lymphatic drainage in extra-cellular space [3], [5].
Hypoal-buminemia and increased intra-capillary hydrostatic
pressure are considered as the main causes of increased lymph
formation [6].

When conducting research in the area of peripheral edema
monitoring, the main questions that arises is “where on the
body can peripheral edema be monitored most effectively?”
While it is feasible to measure peripheral edema from various
lower-body locations, it appears that the medical community
has reached a unanimity that ankle edema is the best rep-
resentative of the peripheral edema. The practicability and
dependability of eight different methods of peripheral edema
measurement as well as their association with the classic
clinical assessment of edema were investigated in [2]. It
is concluded that ankle circumference measurement is an
almost perfect inter-examiner and intra-examiner agreement in
assessment of peripheral edema [2], [7]. Moreover, numerous
past studies have confirmed the validity of lower limb edema
estimation by means of circumference measurement [8]—-[12].
In addition to easiness, circumference-based measurement of
lower limb volume is a rapid way for edema changes assess-
ment that could be used in substitute of water displacement
method [13], [14] which is considered as the gold standard
method for this purpose [15]. Therefore, in this paper our
goal is to monitor ankle circumference as the most promising
assessment in edema monitoring.

Monitoring lower limb edema in the clinic is usually
straightforward and often subjective. In most cases, after the
subject is stabilized in desired position for the preferred
amount of time, a human operator uses simple tools and
methods such as tape measure to carry out the task. Another
method is to apply pressure on the skin with the tip of thumb.
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Clinicians estimate the amount of ankle edema based on the
amount of time it takes for the pitting to come back to its
original level after finger is removed.

In spite of the importance of monitoring edema in many
patients for evaluating the course of disease or the effect of
treatment over time, quantifying peripheral edema accurately
and continuously is still a challenge [2], [16]. To the best of
our knowledge, the community is currently lacking a smart
real-time edema monitoring system, able to fully meet the
challenge of remote edema monitoring. In continuous mon-
itoring, several contextual factors besides the actual disease of
an individual becomes important. For example, distribution of
peripheral edema is different in ambulatory versus sedentary
patients. Lower limb edema formation is sensitive to change
in type of activity as well as body posture of the person [17].

In this paper, we propose a multi-faceted platform which
can effectually relate technological and clinical challenges of
utilizing wearable bio-sensing technologies along with body
posture/activity identification, validation algorithms and ma-
chine learning techniques for the purpose of continuous ankle
edema monitoring. A self-calibrated, activity-aware edema
measurement which can be used to provide patients or care
givers with accurate feedback for timely intervention. With
advancements in the field of bio-sensing and remote patient
monitoring, it is important to take the benefit of potential
technologies that provide continuous and remote edema mon-
itoring.

II. PRELIMINARIES

A. Motivation

Monitoring the extent of edema (ankle circumference) is
essential as to evaluate the development of disease, effec-
tiveness of therapy, and the degree of response to treatment.
Quantification of the edema level could motivate patients to
keep up following their treatment plan and working with their
therapist to achieve the desired goals especially in situations
where the treatment is burdensome for the patient or it happens
quite gradually over a long period of time. Additionally, the
ability to accurately and continuously measure and monitor the
amount of peripheral edema in patients would help researchers
to better understand the efficacy of therapeutic procedures or
medications without interfering with patient’s daily routines.
Finally, quantification of the swelling relief could work as a
ground truth for treatment plans that need to be financially
supported by insurance companies.

As an example, heart failure is one of the causes of
peripheral edema. Approximately, two-thirds of patients ad-
mitted to hospitals due to heart failure exacerbation show
significant signs of volume overload such as lower limb edema
[6]. Heart failure is the major cause of hospitalization and
readmission in patients of +65 years of age in the United
States [18] with approximately 25% rate of readmission in 30
days following discharge of which many may be preventable
[19]. Each year, over 2.8 million physician office, hospital
outpatient, and emergency department visits in addition to
1 million hospitalizations occur due to heart failure [18].
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TABLE I
LOWER LIMB EDEMA FORMATION IN DIFFERENT CONDITIONS [23], [24]

Body Condition H Edema level

After 30 minutes of standing Increase
Spine to sitting None
After 20 minutes of sitting Increase
After 20 minutes of lying Decrease
After 40 minutes of standing Increase
After 30 seconds of lowering leg in a sitting position Increase

Continuous monitoring can effectively reduce the number of
unnecessary visits and potentially prevent readmissions by
assisting physicians for timely intervention which saves both
the families and the healthcare system a huge amount of cost.

B. Related Work

In this section, we briefly review some of the previous stud-
ies that have been carried out on development of quantification
technologies for peripheral edema. These technologies can be
generally classified based on their built-in sensor or variable
they attempt to measure. We will also discuss the dynamic
nature of lower limb edema based on the existing literature.
We note that the dynamic nature of changes in ankle edema
makes continuous monitoring of lower limb edema challenging
and warrants for development of technological approaches for
information aquality assessment and assurance.

Kawano et al. developed a volume measurement device
called sensoring wire for edema of lower leg (SWELL) for
workers during the standing work tasks. In this device, a
flexible wire, flat spring, coil spring and a strain gauge are
deployed. The wire is wound around the lower leg to measure
the extent of swelling [20]. Gause et al. worked on an
extensometer for measuring surface area changes of the human
body. This structure includes a wide and thin responsive
conductive elastomeric band which can be adapted to different
parts of the body [21]. Anderson has developed a cable
extension transducer device for measurement of body parts
circumference. The transducer includes a cable extension that
is attached to a rotary shaft and a precision potentiometer. The
amount of cable extension is transduced to a resistance value
that is used to calculate the length value [22]. These devices,
however, do not provide any remote connectivity. It is also
not built for continuous monitoring purposes. Furthermore,
the main application area is for use in workplaces rather
than medial purposes. These systems also do not involve
any intelligent data analysis and algorithmic data processing
capabilities.

C. Context-Sensitive Edema Monitoring

Evening edema of the lower limbs occurs physiologically
after sitting and standing. In healthy individuals this edema
is commonly asymptomatic and disappears during night sleep
[25]. In one study, the volume of the dominant leg of 60 nor-
mal subjects was taken before and after 30 minutes of standing,
sitting or supine lying motionless for 30 minutes. The results
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Fig. 1. High level description of Smart-Cuff

showed that a considerable increase in lower limb volume was
found in subjects after 30 minutes of still standing. Standing
posture led to the maximum increase in foot and ankle volume
followed by sitting and then supine lying [24]. Table I shows
the lower limb edema formation in different conditions. Based
on clinical literature, the lower limb volume change is strongly
associated with body posture. For example, in a case study
on twenty one healthy subjects over 18 years of age the
lower limb volume significantly increased during a period of
30 minutes of standing motionless. Therefore, measurement
should be interpreted based on the body posture of patient
during the day. This requires a reliable body posture/activity
detection system along with the edema measurement device.

III. SYSTEM OVERVIEW

We propose an activity-aware edema monitoring platform
composed of two wearable sensors and related software al-
gorithms. Such a platform, is responsible for providing valid
data regarding ankle circumference (or peripheral edema in
general). While one sensor is in charge of providing measure-
ments on ankle circumference, the system is accompanied by
wearable motion sensors for activity/body posture monitoring
in order to gather data regarding context in which the ankle
circumference data is being collected.

Unlike most of available technologies and devices that
measure the ankle edema without considering the validity of
this measurement, Smart-Cuff is complemented with a data
sanity check algorithm to overcome this shortcoming. Fig. 1
illustrates the high level description of the proposed platform.
Smart-Cuff is equipped with two types of sensors: circumfer-
ence measurement sensor and motion sensors. Circumference
measurement sensor readings are fed to a regression model
to provide the correlated ankle circumference data. Readings
from motion sensors are fed to a machine learning algorithm
that outputs the subject’s activity/body posture. Data sanity
check utilizes these outputs to validate the readings of circum-
ference measurement sensor. Such validation is accomplished
based on medical literature (i.e., Table I) and possible noise
in ankle circumference measurements.

59

v+
= FSR
Vout
R

(a) FSR

(b) Conversion Circuit

(c) Circumference Cuff

Fig. 2. Circumferential sensor cuff including Long force sensitive resistor
(FSR), elastic cuff, and coversion circuit

IV. SYSTEM COMPONENTS AND DATA PROCESSING

A. Sensing Hardware

Our wearable device consists of two sensor types, a process-
ing unit, and a transmission module. The ankle circumference
sensor along with the other parts need to be wearable, low-
cost, energy efficient, and robust enough to allow for con-
tinuous monitoring and large scale deployment. A prototype
of our proposed hardware is built for the test and proof of
functionality. The hardware consists of three components: 1)
Circumferential Sensor Cuff; 2) Inertial Sensor; and 3) Data
Collection/Transmission as described in the following.

1) Circumferential Sensor: Fig. 2 shows the hardware pro-
totype and its components for measuring ankle circumference.
The circumferential sensor cuff utilizes a long force sensitive
resistor (FSR), shown in Fig. 2a, which wraps inside an elastic
band and covers 50% of the band. As illustrated in Fig. 2c,
the wearable cuff consists of two areas as follows. Area (A)
is non-elastic and covered by the force sensitive resistor. Area
(B) is merely made of elastic materials that allow the cuff to
be flexibile with circumference changes. FSR is attached to a
Force-to-voltage conversion circuit, shown in Fig. 2b. Resistor
R is selected to maximize the desired force sensitivity range
and to limit the current through the force sensitive resistor. We
also use an LM358 op-amp. The low bias current of LM358
reduces error due to the source appendance of the voltage
divider. The output of FSR divider is given by (1):

V+

Vout = ——5——
[+ (B)]

ey

2) Inertial Sensor: To measure physical activity/posture,
we use a 9DOF inertial measurement unit (IMU). The motion
sensor device consists of three sensors: a triple-axis gyroscope,
a triple-axis accelerometer, and a triple-axis magnetometer.
These sensors are initially used for hardware prototyping to
study requirements of an activity-sensitive edema monitoring
device. In our experimental validation, we also investigate
which subset of these sensors will be sufficient to accurately
detect activities/postures that are needed for our edema mon-
itoring application.

3) Processing/Transmission Module: Outputs of all sensors
including force sensitive resistor and motion sensors are pro-
cessed using an on-board ATmega328 and sent wirelessly to
a smartphone using a Bluetooth mate. Force sensor output is
converted to digital output using the ADC on ATmega328.
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Fig. 3. An overview of activity recognition process
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Fig. 4. Force-to-voltage circuit output of different subjects.

B. Data Processing

Our data analysis consists of a regression model that trans-
forms sensor readings generated by circumferential sensor into
ankle circumference measurements, and an activity classifica-
tion algorithm that detect context of the user upon which a
valid ankle circumference measurement in determined. The
linear regression model is given by

C =aVou+p 2

where C' denote the ankle circumference and o and 3 are
coefficients of the model.

Fig. 3 illustrates a high level description of our activity
recognition. Motion sensors are first sampled at 100 Hz. A
set of statistical features are extracted from a sliding win-
dow and used to train an activity classifier using standard
machine learning algorithms. Upon occurrence of a valid
activity/posture indicating formation of lower limb edema, the
data sanity check issues a ‘valid’ signal indicating that the
current circumferential measurement is valid for transmission
to a back-end server and for clinical interventions.

V. EXPERIMENTAL MODEL AND RESULTS

In this section, we first elaborate on our experimental
protocol and obtained results for circumference measurement
cuff and then discuss the same route for activity/body posture
identification.

A. Circumference Measurement

In this experiment, we show the correlation between the
change in ankle circumference and the output of our circum-
ference measurement unit and extracted regression model. Five
human subjects with weights between 136 and 241 pounds
have been asked to wear the device. Our data collection have
been reviewed and approved by Washington State University

60

0.59
0.98
0.97
0.96

0.95

Precision

0.54
0.93
0.92
0.91

0.9

1 2

Fig. 5. Precision of activity recognition

5 6 7 8

Movements

9 AVG

(WSU) Institutional Review Board (IRB) before these experi-
ments are conducted. Fig. 4 exhibits the relation between the
FSR divider output (Vout) and subject’s ankle circumference
(C). In order to further demonstrate the reliability of our cir-
cumference measurement device, we repeated the experiment
3 times and the results remained consistent. This observation
suggests that the proposed device is capable of reproducing
the same voltage in different trials. The minor difference in
each trial can be explained by human errors. Eq. (3) is the
linear regression model extracted from the data collected in
first trial. Regression model achieved and R? value of 0.97.

W Logestic WMKNN 1a8

C =6.4061V,y: — 11.6322 3)

B. Activity/Posture Identification

In this experiment, five human subjects were asked to
perform different activity/postures in a natural setting for
50 seconds wearing 5 9DOF IMUs on the left ankle, right
ankle, left wrist, right wrist, and waist. These activity/postures
include lying against the left side (1), lying against the right
side (2), prone (3), sitting on a chair (4), sitting on a chair with
legs up (5), sitting on the ground (6), standing (7), supine (8)
and walking (9). Readings were transmitted to a Galaxy S4
phone paired to the IMUs worn by each subject and then stored
in the phone’s memory using a basic Android application we
built. This application is capable of pairing and collecting
IMU readings simultaneously. Note that using 5 nodes for
activity/posture detection is an exhaustive approach (especially
when activities are not very detailed and similar to each other).
However by performing feature selection on the collected data,
we try to optimize the setting by reducing the number of nodes
and utilized sensors to simplify the hardware aspect of our
system while maintaining the high quality.

Sensor readings have been captured at 100Hz sampling
frequency and segmented into windows of 300 samples with
0.8 data overlap between successive segments. In feature
extraction part, we extracted a set of statistical features (ampli-
tude of signal segment, median of signal, mean value of signal,
maximum value of signal, minimum value of signal, peak
to peak amplitude, standard deviation, variance, root mean
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TABLE II
AVG. PRECISION FOR 9 MOVEMENTS USING 5 NODES VS L-A vs L-A
MGT

[nodes,sensors] || [allall] [ [L-A.all]
0.998 0.996
0.997 0.994

[L-A,Magnetometer]

0.992
0.990

Avg. Precision

Avg. Recall

square power, and start to end value) that has been shown
to be very effective in activity recognition [26]. Extracted
features were, then, fed into various classifiers where 66%
of samples are training data and the remaining 34% are test
data. Fig. 5 and Fig. 6, respectively, show the activity/body
posture precision and recall accuracy with five nodes based
on different classification algorithms. As you can see, logistic
regression yields the highest outcome.

Therefore, we use logistic regression for further
node/feature selection analysis. Table II illustrates the
average accuracy of five nodes versus left ankle node
versus the magnetometer embedded in left ankle IMU.
The results show that for this level of motion detection,
a single magnetometer is able to satisfyingly provide our
proposed edema monitoring framework with activity/posture
information.

VI. FUTURE DIRECTION

Recent advancements in wireless technology, development
of sensitive sensors, and evolution of sophisticated machine
learning algorithms has made it possible to design a state-
of-the-art technology that could remotely monitor peripheral
edema. This in association with remote monitoring of other
biometrics such as weight, heart rate, and blood pressure
provides more tools to today’s health care system endeavor to
keep patients out of hospital. However, in terms of hardware
architecture and algorithms there are still some challenges
that need to be perfectly addressed. The proposed prototype
is still in its early stages. Building a fully wearable Smart-
Cuff using e-textile technology can be considered as a future
work. We can utilize the output data for conducting post data
analysis. Such analysis aims to find trends in calibrated data
and provide both patients and therapists with insights such as
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patient’s severity of condition (namely, edema index). These
outputs could be remotely shared in a real-time fashion with
health care providers so that they can promptly provide advice
or intervene if needed to prevent consequences of disease
exacerbation. Those algorithms include the front end sensing
which allows for data gathering, sensor calibration and back-
end data processing algorithm.

Front End Sensing Algorithms: our system requires a
number of basic algorithms to efficiently handle tasks such
as data collection (sampling, storing) and data transmission.
The front end sensing algorithms aim to maximize data
collection/transmission efficiency.

Calibration Algorithm: a calibration algorithm is needed
to map the ankle circumference measures into a calibrated
value based on inertial readings from other sensors and
overlook the possible noise in edema measurement sensor. It
should result in more consistency and accuracy in measure-
ment.

Back End Data Analysis Algorithm: the purpose of such
analysis is (a) to find correlation between ankle circumference
measurement and physical attributes of the patient (contextual
readings) (b) to find patterns in data that could lead to medical
problems and (c) to provide the physician with an edema
index (which indicates the severity of patient’s condition) in a
continuous fashion. We refer to this approach as back end data
analysis. Back end data analysis can be potentially addressed
by machine learning and artificial intelligence techniques such
as pattern recognition and classification algorithms. Contextual
information such as amount of physical activities could be
used to infer the patient’s level of fatigue over time. The ankle
circumference measure and activity/body posture history could
be provided for the pattern recognition algorithm. Whereas
inputs of the classifier could be statistical features of data
extracted from motion sensor(s) (In Section V, we demon-
strated that one sensor is sufficient for the desired task). Edema
index could be calibrated with level of patient’s daily activity
where a higher level of activity (meaning those activities which
add to edema volume) would result in a higher edema index
threshold.

VII. CONCLUSION

In this article, we proposed a real-time and context aware
edema measurement platform. We built a prototype for a
Smart-Cuff, able to (1)continuously monitor the ankle circum-
ference changes in edema patients and (2)validate the output
with data sanity check to remove the medically invalid or noisy
output. As mentioned, peripheral edema is one of early signs
for various medical diseases. Some of such diseases are in fact
deadly conditions that often result in frequent hospitalizations
which costs huge amounts for both patients and the healthcare-
system. The proposed Smart-Cuff enables the caregivers to
continuously and remotely monitor the edema level in patients
without any manual intervention. The experimental results
indicate that firstly, Smart-Cuff is able to sense the circumfer-
ential change in a very acceptable level (with an R? of 0.97
for our regression model) and secondly, the IMU employed
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in this prototype is able to almost fully identify the different
activity/postures (even with utilizing only the magnetometer
embedded in the IMU, we have achieved over 99% accuracy)
which are of importance for the sanity check purposes. This
is an integral step that takes the edema monitoring to a whole
new level and finally fulfills the need for a cost-effective,
accurate, real-time and most importantly context aware system
which provides both patients and caregivers with high quality
assessment.
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