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Abstract— Ankle edema is one the most significant symptoms
for monitoring patients with chronic systematic diseases. It is
an important indicator of onset or exacerbation of a variety of
diseases that disturb cardiovascular, renal, or hepatic system
such as heart, liver, and kidney failure, diabetes, etc. The
current approaches toward edema assessment is conducted
during clinical visits. In-clinic assessments, in addition to being
greatly burdensome and expensive, are sometimes not reliable
and neglect important contextual factors such as patient’s phys-
ical activity level and body posture. A novel wearable sensor,
namely SmartSock, equipped with accelerometer and flexible
stretch sensor embedded in clothing is presented. SmartSock
is powered by advanced machine learning, signal processing,
and correlation techniques to provide real-time, reliable, and
context-rich information in remote settings. Our experiments on
human subjects indicate high confidence in activity and posture
recognition (with an accuracy of > 96%) as well as excellent
reliability in edema quantification with intra-class correlation
and Pearson correlation of 0.97.

I. INTRODUCTION

Tens of millions of people in United Stated are currently
diagnosed with various systematic diseases related to car-
diovascular, renal, and hepatic system. Examples include
chronic heart failure, COPD, chronic kidney and liver failure,
and diabetes. Over five million American were diagnosed
with heart failure in 2009 alone [1]. The total costs of heart
failure treatment in the United States exceeded $31 billion
in 2012 and this figure is projected to reach $70 billion by
2030 [2]. One of the most significant common symptoms
among these diseases is peripheral edema. Edema is the
acute accumulation of fluid in body tissues under the skin
which appears as swelling mostly in lower leg and ankle.
Monitoring edema has been practiced by clinicians due to its
significant role in treatment of the disease. It helps clinicians
and caregivers ensure the effectiveness of treatments and
therapies, observe any severe changes in patient’s condition
and intervene if necessary.

Edema has been conventionally assessed in clinics through
periodic patient-caregiver visits. The manual assessment in-
cludes methods such as using a tape measure, water displace-
ment, and pitting. One issue with such methods is the relia-
bility and consistency concern [3]. For instance, the manual
assessment may be conducted by different caregivers. More
importantly, such methods overlook the essential impact of
patients daily activity level. In fact, the formation of edema
is very dependent on patient’s current body posture and
physical activity level [4]. The type of body posture and
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the amount of time that it was maintained play a crucial
role. In the cases that the contextual information is gathered,
it is often via self-reports that are proved to be biased and
inaccurate [5].

Wearables, as an enabling technology in pervasive com-
puting, has been used before for various context-aware
applications such activity recognition [6], [7], gait analy-
sis [8], medication adherence [9], etc. Few pervasive and
remote edema monitoring approaches have been proposed,
to date, to overcome the shortcomings of manual assess-
ments. Examples are blood-pressure monitoring and weight
monitoring. Recent studies demonstrated the inefficiency of
these methods as they are subject to high false positive
rate [10]. Some prior studies investigated the possibility of
using sensor for more accurate assessment of lower-limb
edema. In [11], [3], [12], the authors used stain gauge and
force sensors for leg volume measurement. Gaues et al. [3]
developed an extensometer to measure the changes in surface
of the body. Other studies reported using other solutions such
as potentiometer and 3D cameras [13], [14]. Some of the
prior works have focused on different applications such as
edema in workplaces rather than in-home patient monitoring.
Moreover, none of the other studies proposed any intelligence
data processing, context-awareness, or wireless connectivity
for enhanced edema monitoring.

We introduce a real-time and activity-sensitive wearable
system for monitoring ankle edema. SmartSock is equipped
with state-of-the-art technologies in terms of hardware de-
sign and intelligent data processing. This is a multi-faceted
platform capable of accurate and reliable assessment of
edema. The low-power accelerometer sensor feeds the ankle
acceleration data to our machine learning pipeline for the
purpose of accurate activity and body posture identification.
It provides the basis for context-rich edema monitoring.
Furthermore, the unique flexible stretch sensor embedded
into the fabric, supported by signal processing and correla-
tion techniques, enables SmartSock to reliably measure the
changes in ankle edema in remote and in-home settings. The
main contributions of our study are as follows: (1) intro-
ducing a wearable edema monitoring sock (SmartSock) with
unique hardware/software design; (2) addressing the critical
need for activity-sensitive edema monitoring; (3) validating
the SmartSock using five participants in a comprehensive
experimental procedure.

II. SYSTEM AND METHODS

SmartSock is a combination of sensors and data processing
pipelines designed for providing ankle edema quantifica-
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Fig. 1: (a) The hardware components embedded in SmartSock including a custom
designed motion sensing and processing board, a flexible 12-inch stretch sensor,
Lithium Ion battery, and a BLE transmission module. (b) Sketch design of SmartSock
prototype. Area (A) shows the stretch sensor wrapped inside and around the elastic
cuff. Area (B) has the rest of the hardware embedded inside the clothing.

tion data annotated with activity/body posture information
in a continuous manner. In this section, we elaborate on
hardware/software design steps devised toward creating the
SmartSock prototype.

A. Hardware Description

When designing the edema sensor, various design factors
such as user adaptability, wearability, power efficiency, and
accuracy need to be taken into account. Fig. 1a illustrates the
components employed in our sensing hardware; it includes a
custom designed printed circuit board (with an ATmega328
micro-controller and an ADXL345 accelerometer, on board),
a 12-inch stretch sensor, a 500mAh Polymer Lithium Ion
battery, and a Bluethooth low energy (BLE) transmission
module. ADXL345 is a low power (25 − 130µA at 2.5V )
three-axis 13-bit resolution accelerometer with ±16g sens-
ing range. 13-bit digital output enables the sensor to have
extremely high resolution (4mg/LSB).

The stretch sensor used for quantification of ankle cir-
cumference is a cylindrical cord made of unique polymer
component. Its resistance will increase when stretched. The
sensor has a nominal resistance of 1000 ohm per linear
inch when un-stretched. Its resistance roughly doubles when
stretched 50% [15]. Fig. 1b shows a design sketch of Smart-
Sock prototype and the placement of different components.
The stretch sensor is placed around the cuff and inside the
elastic fabric in order to allow the sensor to get stretched
freely. The remaining components including the board and
battery are placed slightly above the ankle and embedded
into the clothing therefore the components and circuitry are
invisible when the sock is worn.

B. Circumference Measurement

The edema quantification procedure consists of a training
phase where a correlation model is built and a measurement
phase where the trained correlation model will be used to
continuously estimate the current ankle circumference using
the stretch sensor’s readings.
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Fig. 2: Stretch sensor output being smoothed using a moving mean filter.

1) Correlation Model Training: Fig. 3a shows the data
flow in training phase. The input signal is the stretch sensor
data annotated with actual ankle circumference. The readings
are first smoothed using a moving mean filter described in
Equation (1), where S(t) denotes the signal amplitude at time
t and n indicate the size of moving window. Moving mean
is commonly used in time series to filter out the short-term
fluctuations and highlight the long-term trends. The short-
term fluctuations in the output of flexible stretch sensor are
primarily caused due to unwanted events such as lower-leg
muscle contractions.

V̂ (t) =

V (t) if t ≤ n or t ≥| V | −n∑t+n

i=t−n
V (i)

2n+1 otherwise
(1)

A regression model is trained using the smoothed training
data to convert the output voltage of stretch sensor into
circumference measurements. The regression model is given
by

C(t) = α× V̂ (t) + β (2)

where C(t) and V̂ (t) denote the correlated circumference
and smoothed output voltage of stretch sensor at time t,
respectively, and α and β are the coefficients of the model.

2) Quantification Phase: in this phase, as shown in
Fig. 3b, the output of stretch sensor, before being smoothed,
is fed to the filtering block. This block uses the predicted
physical state in activity recognition pipeline as a control
signal to decide whether or not to pass the current stretch
sensor readings to the correlation model for further pro-
cessing (i.e., circumference quantification using Equation
(2)). The system categorizes the subject’s physical state into
‘valid’ and ‘invalid’ states. The filtering block discards the
edema sensor readings captured during invalid states. Fig. 4
illustrates an example of a portion of continuous output
voltage cleaned by the filtering function. In this example,
only the readings captured during the activity of interest (i.e.,
valid states: stand, sitting in chair as considered in this paper)
is passed for smoothing and then into the correlation model.

C. Activity/Body Posture Detection

The contextual information regarding the patient’s physical
state is essential for reliable remote monitoring of edema.
The activity recognition pipeline aims to provide an edema-
specific body posture and activity recognition enabling the
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(b) Measurement phase.

Fig. 3: Data flow in training and measurement phases.
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Fig. 4: Filtering block validates the circumference sensor readings by discarding the
data captured during invalid physical states (e.g., walking, laying down, etc.). The
segments highlighted in red will be discarded.

system to validate the edema sensor readings (taking place
filtering block in Fig. 3b) and annotate the valid reading by
their corresponding body posture. Fig. 5 illustrates a high-
level description of our activity recognition model. Similar
to circumference measurement procedure, it encompasses a
training phase and measurement phase.

1) Training Activity Learner: This task is carried out
using the three-axis acceleration data which are manually
annotated with their actual physical state. The labeled data
are first segmented into short windows of activity. Using
the sliding window method, segments of 54 data instances
(i.e., 3 seconds of activity at 18Hz sampling frequency) are
extracted. The sliding window allows for 80% of overlap
between successive segments. 10 statistical temporal features
(i.e., amplitude, median, mean, maximum, minimum, peak to
peak, standard deviation, variance, root mean square power,
and start to end value) are extracted from each segment.
These features provide an optimal trade-off between com-
putational complexity and activity recognition accuracy [16]
and, as a result, make the the data processing more adaptable
for use in a wearable system which is constrained by limited
energy source and computational capability. The extracted
features and their corresponding activity labels are then used
to train a standard machine learning algorithm (e.g., decision
tree, nearest neighbor, etc.).

2) Continuous Activity Recognition: Once an activity
learner is built, we use the trained model to predict the corre-
sponding physical activity label of unlabeled data (i.e., 3-axis
accelerometer readings). The unlabeled data (also referred
to as test data) will go through the same segmentation and
feature extraction process. The extracted features will be fed
into the activity learner that ultimately outputs the predicted
activity/ body posture.
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Fig. 5: Data processing flow in physical activity detection. *In training phase, a
classifier will be trained in this block. Also, the input data in training phase is labeled
data.

TABLE I: The details of the movements performed in our experiment including light
activities, transitional movements and body postures.

No. Physical Movement Details Length

1 stand standing naturally 60s

2 sit in chair feet planted to floor 60s

3 sit on floor legs parallel to floor 60s

4 lay on floor back and leg parallel to floor 60s

5 sit to stand from chair to upright stance 10x

6 bending at knees pick up coin from floor 10x

7 bending at waist pick up coin from floor 10x

8 jump jump vertically 10x

9 climb stairs one step per stride 6 flights

10 descend stairs one step per stride 6 flights

11 walk at normal pace 60s

III. VALIDATION

In this section, we first describe the experimental setup and
then present the activity/ body posture classification accuracy
and correlation results using various measures of reliability
and repeatability.

A. Experimental Setup

The experiment aims to provide proof of functionality of
SmartSock system in terms of accuracy of activity detection
and ankle circumference quantification. Five healthy individ-
uals aged between 23 and 31 were recruited on Washington
State University (WSU) campus. Participants were informed
of the experiment procedure and goals and were required
to sign a consent form approved by WSU IRB (]14522-
001). We asked each participant to perform 11 different
physical tasks while wearing the SmartSock prototype on
the right foot. These tasks (detailed in Table I) include three
categories: transitional movements, physical activities, and
maintained body postures. These tasks are selected such that
they cover main physical states in their categories with most
impact on activity aware edema assessment. Fig. 6 shows a
picture of a participant wearing the prototype. SmartSock
was paired with a password protected Microsoft Surface
device through Bluetooth connectivity and the collected
data were stored on the device during the experiment at
18.7Hz frequency. At the end of the experiment, the actual
circumference on the exact location of stretch sensor was
manually measures using a tape measure.

B. Activity Recognition Results

The collected acceleration data were segmented into win-
dows of 54 instances (i.e., 3 seconds of activity). Ten
statistical features were extracted from each data segment
resulting in a total of 174× 10 annotated features. A Matlab
tool was developed to perform off-line segmentation and



Fig. 6: A participant wearing the SmartSock prototype.

feature extraction. The annotated feature set was then fed
into various machine learning algorithms. We used Weka
machine learning toolkit for training and evaluation of our
classification models. We chose Decision Tree algorithm
(DT), Nearest Neighbor (NN), and Naive Bayes learner (NB)
which offer computationally simple (therefore more suitable)
solutions for activity identification in wearable systems.

In order to evaluate the performance of our classification
models, we ran two tests using 10-fold cross-validation and
66%-test split methods. 10-fold cross-validation uses one
tenth of data as the supplied test in each iteration and reports
the average performance. Test split method trains the model
using a portion of data and tests the model using the rest.
Fig. 7 shows the performance of the activity recognition
models in terms of precision and recall accuracy and the area
under ROC curve. Precision metric measures the fraction of
identified labels that are relevant where recall measures the
proportion of labels that are correctly identified as such. ROC
is true positive rate vs false positive rate plot. ROC area
is an indication of the probability that the current model
is making an informed decision. As it can be observed in
Fig. 7, decision tree and nearest neighbor models showed
sufficiently high performance (≥ 0.95) outperforming naive
Bayes model. The reason is that probabilistic models such
as naive Bayes often fail to offer significant performance on
smaller data sets. Cross-validation method slightly outper-
forms the 66%-test split due to its advantage in using the
entire data set.

Table II reveals more details of activity recognition results.
It shows the confusion matrix and the precision and recall
accuracy of the decision tree model for each movement
evaluated using 10-fold cross-validation evaluation method.
While the overall accuracy of the model is high (with
weighted average accuracy of 0.97), some instances of
movements 9 and 10 (i.e., climbing and descending stairs)
were misclassified by the activity recognition model.

C. Circumference Measurement Results

Using the stretch sensor data collected during the experi-
ments, we developed a regression model to correlate the val-
idated smoothed output with actual ankle circumference. As
discussed in Section II-B, we first exclude the stretch sensor
readings captured during invalid physical states. Similar to
in-clinic edema assessment, we consider movements 1 and
2 (i.e., standing and sitting in chair) as the only medically
relevant inputs (i.e., valid states) to our edema quantification
module. The valid voltage output is then smoothed using the
window size of n = 10s to discard the unwanted fluctuations
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Fig. 7: Performance of different classifiers using 10-fold cross-correlation and 66%-
test split evaluation methods.

TABLE II: Confusion matrix and precision and recall accuracy of each movement
using DT classifier and 10-fold cross-validation method.

Classified as → (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (10) Precision (%)

(1) 388 0 0 0 0 0 0 0 0 0 0 1
(2) 3 385 0 0 0 0 0 0 0 0 0 99
(3) 0 2 385 1 0 0 0 0 0 0 0 99
(4) 0 0 4 384 0 0 0 0 0 0 0 99
(5) 0 0 0 0 44 0 2 0 0 2 0 91
(6) 0 0 0 0 1 47 0 0 0 0 0 97
(7) 0 0 0 0 1 0 47 0 0 0 0 97
(8) 0 0 0 0 0 0 0 43 1 4 0 89
(9) 0 0 0 0 0 0 0 1 241 15 3 92

(10) 1 0 0 0 0 0 0 3 18 231 7 89
(11) 0 0 0 0 0 0 0 0 3 2 283 98

Recall (%) 99 99 99 99 95 100 95 91 91 90 97 -

TABLE III: Details of regression models and their corresponding R-squared value.

Included Physical States Regression Model R2

”stand” C(t) = −14.2× V̂ (t) + 818 0.94

”sit in chair” C(t) = −15.2× V̂ (t) + 859 0.90

”stand” & ”sit in chair” C(t) = −14.7× V̂ (t) + 838.5 0.91

caused by irrelevant sources such as muscle contractions.
In the next step, the preprocessed data collected from each
participant (i.e., 60s of standing and 60s of sitting in chair)
were split into three 20-second segments of continuous
data. We refer to each data segment as one trial. Trails
are annotated with participants’ actual ankle circumference
measured at the time of experiment. We used these trails
to (1) build the linear regression model and (2) calculate the
reliability and repeatability measures to evaluate the usability
of flexible stretch sensor.

Using the median value of each trial and its corresponding
circumference label, we developed a linear regression model
as described in Equation (2). Three regression models were
built using instances of movement (1), movement (2), and
combinational of those two. Table III presents the details
of constructed models and their corresponding R2 values. A
high correlation of sensor output and actual circumference (>
0.90) was reported. However, data instances captured during
”stand” state, shows comparatively higher correlation. One
explanation could be the higher chance of deviation from
upright position in lower leg, when sitting in chair that could



TABLE IV: Reliability measures for each pair of trials

Subjects 1 2 3 4 5

Trial pairs 1-2 2-3 1-2 2-3 1-2 2-3 1-2 2-3 1-2 2-3

Typical Error 0.18 0.11 0.14 0.12 0.15 0.09 0.08 0.14 0.14 0.18

Pearson Correlation 0.96 0.97 0.96 0.99 0.97 0.98 0.96 0.96 0.97 0.98

Intraclass Correlation 0.98 0.96 0.97 0.97 0.96 0.97 0.99 0.96 0.98 0.96

cause possible inconsistencies in stretch sensor readings.
In order to further explore the usability of the stretch

sensor in terms of reliability and repeatability in readings, we
calculated the Pearson correlation and intraclass correlation
(ICC) measures. Table IV shows the metrics calculated
for each subject collected from stance posture. Pearson
correlation measures the level of consistency between each
trial where any value greater than 0.9 is considered ex-
cellent reliability. The intraclass correlation measures the
absolute agreement between output of different trials. The
average reported number for ICC is 0.97. Similar to Pearson
correlation, any ICC value above 0.9 indicates excellent
repeatability. This result suggests that the proposed sensing
device is capable of reproducing the same output in different
trials with excellent reliability. The minor difference in each
trial can be explained by human errors or irrelevant sources
of distortion (Standard error of measurement a.k.a typical
error). Typical error of around 0.1 results in 95% confidence
interval of [V ±2.65∗SEM ] = [V ±0.26] which is sufficient
for detecting meaningful changes in ankle circumference
(i.e., it lies outside the margin of error) for the purpose of
edema monitoring.

IV. CONCLUSION

An activity-aware remote edema monitoring platform,
namely SmartSock, was presented in this paper. SmartSock
is a fully wearable sensing system that takes advantage of
advanced techniques in machine learning and signal process-
ing. As mentioned, ankle edema is an important symptom
of several chronic and systematic diseases such as heart
failure, kidney and liver failure, diabetes, etc. Conventional
in-clinic assessment of edema has several disadvantages: (1)
it is burdensome for edema patients (especially older adults);
(2) it is very costly for health-care system, patients, and
insurance companies; (3) it offers incomplete and often un-
reliable information in terms of contextual information such
as daily physical activity level; (4) it is prone to human error
and fails to provide accurate, comprehensive, and continuous
assessment. SmartSock is a remote monitoring solution to
disadvantages of in-clinic assessments. It provides a means
for context-rich, accurate, and reliable edema monitoring in
remote settings which makes it a better, more affordable, and
more convenient alternative to current methods.

Our experimental results demonstrate that SmartSock is
capable of identifying a wide range of physical activities with
an accuracy of 97%. Furthermore, the unique flexible stretch
sensor employed in our device is capable of measuring
ankle circumference with high correlation (R2 = 0.94) and
excellent test-retest repeatability (ICC = 0.97).
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