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Wearable cameras provide an objective method to visually confirm and automate the detection of health-risk behaviors such 
as smoking and overeating, which is critical for developing and testing adaptive treatment interventions. Despite the potential 
of wearable camera systems, adoption is hindered by inadequate clinician input in the design, user privacy concerns, and user 
burden. To address these barriers, we introduced HabitSense, an open-source1, multi-modal neck-worn platform developed 
with input from focus groups with clinicians (N=36) and user feedback from in-wild studies involving 105 participants over 
35 days. Optimized for monitoring health-risk behaviors, the platform utilizes RGB, thermal, and inertial measurement unit 
sensors to detect eating and smoking events in real time. In a 7-day study involving 15 participants, HabitSense recorded 
768 hours of footage, capturing 420.91 minutes of hand-to-mouth gestures associated with eating and smoking data crucial 
for training machine learning models, achieving a 92% F1-score in gesture recognition. To address privacy concerns, the 
platform records only during likely health-risk behavior events using SECURE, a smart activation algorithm. Additionally, 
HabitSense employs on-device obfuscation algorithms that selectively obfuscate the background during recording, maintaining 
individual privacy while leaving gestures related to health-risk behaviors unobfuscated. Our implementation of SECURE 
has resulted in a 48% reduction in storage needs and a 30% increase in battery life. This paper highlights the critical roles of 
clinician feedback, extensive field testing, and privacy-enhancing algorithms in developing an unobtrusive, lightweight, and 
reproducible wearable system that is both feasible and acceptable for monitoring health-risk behaviors in real-world settings.
1
https://github.com/HAbitsLab/HabitSense
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1 INTRODUCTION AND BACKGROUND
In the United States, obesity represents a significant public health concern, affecting approximately 40% of adults 
[1, 2]. Obesity is closely associated with an elevated risk of various chronic diseases, including heart disease, 
certain types of cancer, and other long-term health issues [1, 2]. Similarly, cigarette smoking remains the leading 
cause of preventable death [3–5]. Health-risk behaviors such as overeating, excessive food consumption beyond 
physiological needs, and tobacco smoking are major contributors to premature morbidity and mortality worldwide.
[6–8]. Eliminating these behaviors can help prevent several chronic diseases. However, this requires understanding 
and modifying what individuals put into their mouths. Accurate and efficient detection of consumption patterns 
will improve our knowledge of these behaviors and facilitate the development of effective interventions to prevent 
them.

In current approaches to understanding the factors influencing the daily habits of individuals, clinicians often 
rely on self-report methods to document food consumption, timing, and psychological factors related to the 
behavior of interest. Although self-report methods effectively capture psychological factors, these methods 
may introduce bias, impose a significant burden on participants, and are frequently susceptible to errors from 
forgetfulness [9–12]. Integrating automatic, objective measures would significantly enhance the accuracy in 
documenting the timing, patterns, and context surrounding consumption behaviors [13, 14]. The increasing 
popularity of wearable technology, such as smartwatches, offers the potential for automated behavior monitoring, 
but these devices lack essential visual confirmation capabilities for real-life applications. Wearable cameras offer a 
promising solution by providing visual evidence that enhances contextual understanding and offers more reliable 
approaches to automated confirmation of health-risk behaviors. Therefore, there is a need for objective, unobtrusive 
wearable camera systems that can enhance the diagnosis of health-risk behaviors, allowing for personalized 
treatments and real-time triggers to test interventions that improve treatment outcomes [15, 16].
Wearable cameras developed by the ubiquitous computing community have shown promise in monitoring 

behaviors such as overeating and smoking. However, their adoption, particularly in clinical settings, faces 
significant challenges, primarily due to the lack of clinical involvement in the design process [17]. This oversight 
often results in systems that do not align with the specific needs and workflows of healthcare providers, preventing 
their integration into routine clinical practice [17]. Engaging clinicians early in the development process is 
essential to ensure that the physical design and capabilities of the system are practical and valuable in real-
world healthcare settings. [18]. However, the role of clinician involvement in designing wearable cameras and 
qualitatively analyzing potential obstacles that might impede their acceptance and feasibility in healthcare 
settings has not been extensively investigated.
Based on feedback from our focus groups with clinicians (N=36) and experience from user studies involving 

wearable camera systems (N=105, across studies), privacy concerns continue to be a significant barrier to adopting 
wearable cameras. To address user privacy concerns, recent studies have explored the concept of activity-oriented 
cameras (AOCs) [19]. In contrast to traditional surveillance and egocentric cameras, AOCs are designed to focus
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Fig. 1. The HabitSense device (left) and its applications (right). HabitSense is a wearable multi-modal system (thermal, RGB,
accelerometer) optimized for privacy, enabling all-day recording and on-device processing to detect health-risk behaviors
associated with smoking and eating.

only on capturing the intended activity of interest, inspired by the principle of least privilege (PoLP)[20, 21]. For

example, one approach to capturing hand-to-mouth gestures involves orienting the lens of a neck-worn camera

toward the mouth of the wearer (the person wearing the camera) and obfuscating background pixels to prevent

capturing bystanders (individuals other than the wearer) or unintended behaviors in the video.[22]. Research

has demonstrated a significant increase in system acceptability among both AOC wearers and bystanders while

simultaneously maintaining the utility of visually confirming hand-to-mouth behavior [23]. However, there

currently exists no AOC-based wearable system capable of running such obfuscation algorithms on-device in

real time, while also detecting health-risk behaviors.

Developing an AOC-based wearable camera system that can capture eating and smoking gestures while

running obfuscation algorithms in real time presents two challenges. First, the device must operate continuously

for a full, 16-hour day [24]. Second, the camera must be computationally capable of running real-time obfuscation

algorithms with the least possible impact on battery life. Smart activation mechanisms can improve battery life

by using a low-energy sensor to detect preliminary signs of specific behaviors, activating more power-intensive

tasks only as needed [25]. Given that eating and smoking are intermittent activities, this approach will allow

selective activation of obfuscated recordings only when a sensor detects preliminary gestures of these activities. This
will not only conserve battery life but also enhance privacy by ensuring that only detected health-risk behaviors

are recorded.

Given the need for a sensor that can detect preliminary gestures of interest to activate high-energy processes

and considering the necessity to obfuscate the user’s background for privacy, we decided to build a wearable

camera that incorporates an infrared (IR) thermal sensor alongside RGB. The choice of an IR thermal sensor is

strategic because it allows the detection of the wearer and any objects theymight handle by exploiting temperature

differentials. Because the wearer is closest to the camera lens, their body temperature will create a distinct thermal

signature, effectively distinguishing them from the background, enabling methods that distinguish the wearer

and foreground from the background [22].

In this paper, we aim to synthesize diverse research strands surrounding wearable cameras into a comprehensive

whole, providing clinicians and users with a privacy-preserving, unobtrusive wearable camera platform capable

of providing visual evidence and detecting health-risk behaviors that users are willing to wear throughout the

day. In doing so, HabitSense can assist clinicians in improving treatment efficacy by identifying the contextual

factors that drive these behaviors when they occur to aid in personalizing treatment strategies. To achieve this
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goal of addressing challenges related to acceptance, privacy, and user burden, our paper presents the following

contributions:

(1) To increase clinical adoption and inform design, we report on insights from a qualitative analysis of focus

group discussions involving 36 weight management and smoking treatment specialists to inform the need,

design, and functionality of wearable cameras.

(2) To increase user adoption, we leveraged our extensive iterative experience (N=105, in all studies) in wearable

camera design to develop HabitSense (illustrated in Figure 1), an RGB thermal (RGB-T) wearable camera

that is designed to be easy to use, unobtrusive, reproducible, lightweight, and capable of operating all

day (16 hours). HabitSense is also designed to detect eating and smoking behaviors while incorporating

on-device obfuscation to enhance privacy.

(3) To enhance user privacy and reduce burden, we developed the Sensor-Enabled Control of Ubiquitous

Recording and Evaluation (SECURE) algorithm. This algorithm efficiently activates obfuscated RGB video

recording, successfully capturing 90% of hand-to-mouth gestures associated with eating and smoking while

turning on the camera only 52.4% of the time. As a result, it achieved a 48% reduction in data storage and a

30% reduction in battery usage, significantly optimizing device efficiency.

(4) To evaluate our device, we tested HabitSense in a natural setting with 15 participants (8 with obesity, 7

smokers), yielding 768 hours of footage, and reported on the high user acceptability of the HabitSense

device.

(5) To validate the utility of our device, we trained machine learning models on RGB, thermal, and obfuscated

video data to run offline and in real time. We then rigorously evaluated their ability to recognize eating,

smoking, and hand-to-mouth gestures and reported on the performance of our models. Our comprehen-

sive assessments demonstrated a 92% F1-score in hand-to-mouth gesture recognition, highlighting the

effectiveness and versatility of our models. Additionally, our eating and smoking detection models proved

to be robust across various conditions, including night time, low-light settings, and during intense head

movements.

Although this paper focuses on smoking and eating, HabitSense enables a paradigm shift in real-time behavior

monitoring to test the effectiveness of timely interventions for multiple health-risk behaviors, including substance

abuse, alcohol consumption, and medication adherence.

2 RELATED WORK

2.1 Current Wearables for Detection of Eating and Smoking Activities
This section highlights a few of the existing wearables for eating and smoking detection and their limitations. A

more comprehensive discussion is provided in Supplementary Section 9.1.

Wrist-worn inertial measurement unit (IMU) sensing modalities are recognized for their ability to detect eating

and smoking activities; however, they face challenges in practical application. These include false positives from

unrelated movements, issues with sensor positioning (i.e., dependency on the dominant hand), and difficulties

in generalizing across different individuals [16]. However, IMU-based sensors continue to provide utility by

supplementing multi-modal devices [26].

Acoustic-based wearables [27–29] have shown promise in capturing chews, swallows, and jaw motion for

eating and respiratory monitoring [30] to detect smoking inhalation. However, microphones are susceptible

to noise interference, particularly in free-living environments. Moreover, using microphones raises significant

privacy concerns in everyday settings[19].

Alternate-based sensing modalities attempt to capture smoking behavior by capturing multiple consecutive

behaviors, such as the use of a smart lighter [31], or by combining detection of respiratory patterns with hand-to-

mouth gestures [32]. Although current methods for automated detection of eating and smoking are promising,
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Table 1. Comparison of HabitSense and existing systems. This table highlights the distinctions between HabitSense and
other systems in terms of sensor modalities, form factor, privacy protection, and the nature of studies conducted

deploying these methods in free-living settings often relies on self-reporting or external tools for confirmation,

which can introduce inaccuracies and biases into the ground truth data given there is no visual evidence to

confirm the occurrence of the events.

2.2 The Need for Wearable Camera Systems for Detecting Eating and Smoking
To circumvent problems of bias in self-reporting, researchers have turned to wearable camera devices that

continuously record activities, providing rich contextual information and reliable visual confirmation for ground

truth data. The introduction of SenseCam marked a notable stride in this direction–a wearable digital camera

capable of capturing a comprehensive record of the wearer’s daily activities through still images and sensor

data [33]. Building on this concept, Bedri et al. [34] integrated a camera into an eyeglasses-based system that

used IMUs and proximity sensors to detect eating behaviors. Similarly, head-mounted video cameras [35] have

been developed specifically for video-based eating detection. In both cases, the addition of cameras provides

visual ground truth from the wearer’s perspective, enhancing data reliability. Wearable camera systems in the

form of eyeglasses have also been used for smoking detection in free-living settings [36]. Such eyeglasses-based

systems, outfitted with multi-modal sensing capabilities, excel in gesture recognition for eating and smoking

detection tasks. However, the eyeglass form factor impacts its generalizability. Privacy concerns, practical issues

such as hair obstructing the camera, using a single eyeglass frame type, and discomfort or reluctance to wear

glasses among some individuals further impede adoption [36]. Addressing some of these issues, recent research

introduced a thermal camera in a necklace form factor for smoking detection [24]. The authors conducted a

free-living study with the device, collecting thermal data as participants self-reported their smoking activities.

However, the reliance on potentially inconsistent and inaccurate self-reported logs posed a challenge due to

the lack of visual evidence for confirmation. Building on earlier discussions of multi-modal systems with IMUs
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and camera-based systems using RGB and thermal technologies, there is potential for developing a multi-modal

platform that integrates RGB, thermal imaging, and IMU sensors.

2.3 The Need for Clinical Feedback in Informing the Design of Wearable Systems
Wearable technology is increasingly recognized as a vital component in healthcare, offering the potential to

passively monitor health, assist in diagnosis, and enhance patient care [37–39]. However, several challenges

impede the adoption of wearable technology in clinical practice, such as device accuracy, privacy concerns,

and cost, as well as limited clinical involvement in design and technical and interoperability issues [37, 40–45].

Integrating wearable devices into medical practice necessitates clinician input to ensure device effectiveness and

relevance in clinical settings. Qualitative analysis with clinicians has shown potential in integrating clinician

feedback to improve mobile health (mHealth) technology and increase adoption [17, 46, 47].

2.4 Sensing Multiple Health Behaviors with Privacy-Preserving Wearable Cameras
Using AOCs along with obfuscation algorithms to obfuscate backgrounds—including bystanders and sensitive

activities—has proven effective in mitigating privacy concerns [19, 23]. Surveys [23] have examined the balance

between privacy concerns and data utility using various obfuscation techniques, including blurring, applying a

canny edge algorithm, entirely blacking out the background, or using Generative Adversarial Network (GAN)

-based cartoon obfuscation [48] in activity-oriented videos captured using neck-worn cameras. User studies have

also demonstrated that these techniques effectively reduce privacy concerns [23, 48]. However, implementing

these algorithms in real time on resource-constrained devices is yet to be tested and presents a challenge.

Several camera systems employ on-device obfuscation algorithms to improve privacy [49–51]. However,

these systems are not designed as wearable cameras that can be worn all day on a single charge, and they lack

comprehensive user studies. Recent research has highlighted the potential of thermal cameras for obfuscation

[22]. Thermal data can isolate the wearer’s foreground activities from the background. Although this approach is

promising, it was tested only in offline scenarios. Additionally, it lacks a comprehensive assessment of how well

obfuscation and the use of thermal-only versus RGB-only data impact detecting activities such as hand-to-mouth,

smoking, and eating gestures. Thus, further extensive investigations are necessary to refine thermal camera

efficiency for real-time, on-device applications in real-world settings. This collective evidence suggests significant

potential for developing an AOC RGB-T wearable camera system that uses the thermal sensor for obfuscation

over the need for complex computer vision or deep learning algorithms on the device.

Based on these motivations, the novelty of HabitSense stems from integrating four key aspects: (1) incorpora-

tion of feedback from clinician focus groups and user studies into its development, (2) on-device obfuscation

capabilities, (3) intelligent activation of obfuscated recording to enhance privacy and conserve battery life, and

(4) a comprehensive evaluation framework that assesses the system’s performance across a variety of real-world

scenarios. Table 1 compares our innovative features to existing methods for detecting health-risk behaviors

associated with eating and smoking.

3 CLINICIAN-INFORMED DESIGN: INTEGRATING FOCUS GROUP FEEDBACK INTO WEARABLE
CAMERA DEVELOPMENT

To learn about the importance and feasibility of using privacy-conscious RGB-T wearables for monitoring various

health-risk behaviors, we engaged in focused discussions with healthcare professionals experienced in managing

eating and smoking habits. We recruited clinical dietitians (N=18) and tobacco treatment specialists (N=18) to

ascertain problems faced in their practices, to inform design priorities from their experiences, to assess their

willingness to use and adopt our proposed wearable camera system, and to identify practical challenges in

implementing the system into treatment programs. Each session included either dietitians or tobacco treatment
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specialists; none included participants from both groups. All participants worked in the Chicago area and had at

least two years of professional experience. The focus groups took place during the early stages of the development

of the HabitSense system.

In the focus group sessions, the moderator used a topic guide to ask questions targeting four user-centered

design elements:Motivation:What measurement tools do the clinicians have, and what are their limitations?;

Desirables: What additional measures do clinicians want to improve their understanding of their patients’

behaviors?;Advantages:How could a passive-sensing visual/thermal wearable with real-time activity recognition

benefit clinical practice?; Barriers: What challenges do practitioners foresee in utilizing a system like ours?

To avoid biasing responses to questions about the clinicians’ experiences with contemporary measures, no

information about the proposed system was given until after addressing the Desirables portion of the focus group.

The proposed system shown to participants was an early prototype that incorporated design lessons learned

across Gen 1 and Gen 2 deployments. In addition to planned questions, the moderator asked follow-up questions

and encouraged participants to elaborate on their answers and comment on other participants’ answers.

We structured our analysis to reflect the role of our participants as administrators, rather than end-users, of the

proposed system and to account for the value of their domain expertise in our design process. First, we separated

focus group transcripts by topic and labeled the participants. Two authors then independently analyzed and

thematically coded the transcripts. Once independent code lists were generated, the authors met to compare

lists, resolve discrepancies, and produce and iterate upon a common set of themes. All unique responses that

were "seconded" (i.e., repeated or affirmed) by another participant in the same session were included as themes.

Additional themes were derived inductively and proposed by the authors in keeping with standard thematic

analysis practices [52]. Proposed themes that achieved consensus between authors were added to the final list of

themes, detailed in Table 2.

Unsurprisingly, there was a high similarity in how dietitians and tobacco treatment specialists answered

the moderator’s questions. Both types of practice hinge on providers’ understanding of habitual health-risk

behaviors for any given patient. Both providers rely on similar measurement tools and, though measuring

different behaviors, experience similar measurement limitations.

3.1 Motivation: Existing Measures and Their Limitations
Treatment providers in both groups reported that eating and smoking are traditionally measured by self-report,

in which patients either estimate their dietary/smoking activities over a given time range or record them in

real time via a paper journal or software application. Providers further confirmed that real-time self-reporting

is burdensome and thus achieves limited adherence. Several participants from both groups indicated difficulty

obtaining patient self-reports that are timely, accurate, and consistent over time. The participants reported that

comprehensive calorie or tobacco intake accounting requires too much work for the typical patient. Additionally,

dietitians reported that the quality of self-reported eating data correlates to the dietary knowledge of the patient.

For instance, patients with low dietary knowledge frequently neglect to report sauces and their ingredients

because they are unaware of their importance as food items. In both groups, some providers reported encouraging

patients to use mobile applications for self-reporting. These applications can modestly improve reporting accuracy

for some patients but ultimately suffer from the same adherence problems stemming from the burden involved in

any form of continuous self-reporting.

Providers reported that memory recall approaches (where a trained specialist guides memory exercises to

prompt maximum recollection of events) to smoking and dietary monitoring address the burden problem by

combining the reporting of multiple smoking or eating events into a single recall event. However, both groups

of providers reported that memory recall suffers its own limitations, namely forgetting and dishonesty, both of

which variably bias patient data.
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Table 2. Themes and associated design considerations. Themes are categorized based on those identified in focus group
sessions and are organized by participant group and linked to relevant design considerations. *Retained for future work.

3.2 Desirables: Desired Information About Patients
Because we are designing new modalities of behavior measurement, we asked participants not just what problems

they experience but also what information they would want about their patients in a hypothetical "perfect

world" in which providers can magically obtain any data they want about their patients. Across both participant

groups, responses converged around two key points: (1) context: environmental or social factors surrounding a

given smoking or eating event (e.g., location, presence/absence of others, presence/absence of screens); and (2)

secondary activities: behaviors that co-occur with smoking or eating (e.g., reading, talking on the phone, drinking

coffee). With reliable detection of eating or smoking, our device could trigger timely smartwatch or smartphone

notifications to obtain context or secondary activities.

3.3 Advantages: Benefits of Passive Sensing
After explaining the premise of the HabitSense system to participant groups, we sought their input on the benefits

of an RGB-T passive-sensing system in contrast to the tools currently used in their practice. In linking the system’s

design to the constraints of existing measurement methods, both groups agreed that the proposed system could

enhance the precision of dietary and smoking data accessible to healthcare professionals.

In both participant groups, the automatic delivery of real-time behavioral data to clinicians was viewed as a

strong benefit. Specifically, one clinician stated that "In therapies ... we could check in during the day-to-day through
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the device to actually know about the improvement or if they are lagging behind." Another clinician expanded on

this perspective, emphasizing that "... the disparity of information we are trying to close can be achieved if we get
live statements and summaries from this sensing device." Beyond monitoring treatment efficacy, clinicians reported

great interest in using data reported by the system to infer behavioral triggers from the context and/or secondary

activities associated with eating or smoking episodes. An example provided by a tobacco treatment specialist

illustrates this point: "If the day after tomorrow this person took 15 cigarettes, and maybe today this person took 9,
we can say what happened in that particular day.... Maybe this person was engaging in very tedious activity, and
that craving was a little bit higher." Another tobacco specialist observed that "Using the video, you’d be able to see
if the individual is in a social environment, or among friends... is it peer pressure? Or is it such kinds of things where
the individual is being influenced in a social environment?"
This indicates that these providers are not solely concerned with the observable behaviors but also with

the underlying causes, which are more readily determined when rich contextual information is present before

the event takes place. One dietitian stated, "... the device would be really helpful because we would be able to get
accurate data on what this individual usually does in their normal life, in their normal environment, so that we’ll be
able to understand specifically the activities which usually surround their behavior." In the interest of identifying

these patterns, both groups saw value in fine-grained behavioral measurements. Dietitians expressed interest

in episode-level metrics, including meal duration, number of bites, and number of chews. Likewise, tobacco

treatment specialists expressed interest in smoking topography metrics such as smoking episode duration, number

of puffs, puff duration, inter-puff interval, and puff volume. Dietitians also expressed interest in food temperature

as an indicator of food type and preparation methods.

3.4 Barriers: Challenges in System Implementation

Fig. 2. Mean reported interest in using the HabitSense system
by participant group.

We prompted participants to predict the challenges

of implementing the HabitSense system with real pa-

tients. Both groups shared concerns regarding poten-

tial instances in which the system fails to detect a

smoking/eating episode (false negative) or erroneously

detects an episode when none occurred (false posi-

tive). Similarly, participants raised concerns over op-

erational conditions the device may encounter in prac-

tical use, potentially impacting its effectiveness, such

as water exposure, physical damage, or unusual envi-

ronments. Participants speculated that issues related

to privacy and social stigma might affect the willing-

ness of patients to use the device, citing concerns over

the collection of sensitive data and how the device’s

appearance might be perceived by individuals with

whom the wearer interacts. Participants highlighted

that dishonesty remains relevant because patients who

aim to conceal their eating or smoking behaviors from

healthcare providers could still do so if they know how the system operates. Lastly, dietitians reiterated that cost

is a major factor patients and providers will consider when determining whether to adopt the device.
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3.5 Treatment Provider Interest in Using the HabitSense Wearable Camera
At the end of each session, all participants were asked to rate their interest in using the proposed HabitSense

system in their practice on a scale of 1 to 5, with 1 indicating "not interested" and 5 indicating "extremely

interested." A two-sample t-test was performed to compare interest in using HabitSense in clinical dietitians and

treatment providers. There was no significant difference in interest, t(34)=1.67, p=0.11, despite 18 clinical dietitians

reporting higher levels of interest (M=4.61, SD=0.60), compared with the 18 tobacco treatment specialists (M=4.14,

SD=0.69). Certain participants specified that their rating was contingent on the HabitSense system "working as

advertised" (i.e., performing at the levels of accuracy, generalizability, reliability, and efficiency stipulated in the

design). These findings suggest a significant level of interest among both groups in wearable intake-monitoring

systems and reflect their high expectations regarding the design and performance of these systems. The results

of this focus group question are shown in Figure 2.

Although the difference was not significant, several factors may account for the slightly lower interest in

the HabitSense device among tobacco treatment specialists. More dietitians reported using mobile applications

and related technologies to support diet self-tracking than tobacco treatment specialists, which may contribute

to dietitians having a slightly higher interest in adopting new technologies. Additionally, tobacco treatment

specialists cited slightly greater concern over conditions interfering with the device’s ability to capture contextual

information since cigarettes are smoked in less favorable conditions (outdoors, dark, in motion) compared with

eating (well lit, indoors, stationary plate). Lastly, a picture of a meal may provide slightly greater informational

value than an image of a lit cigarette.

4 DESIGN IMPLICATIONS FROM EXPERIENTIAL INSIGHTS IN WEARABLE CAMERAS
Drawing on insights from dietitians and tobacco treatment specialists, we recognized the key design considerations

outlined in the previous section as including privacy, RGB-T capabilities, sufficient resolution and field of view,

affordability, minimal burden for users, and real-time detection capabilities during all-daywear. Refining our design

in response to feedback and identified considerations, in addition to clinician input, we also uncovered hardware

and firmware challenges through free-living studies with our evolving devices (see Supplementary Section 9.2

for Gen 1 and Gen2 study protocols). This experiential knowledge also informed the design and development of

HabitSense. The subsequent section details our progressive evolution from Gen 1 to the culmination of HabitSense

(see Figure 3 and Table 3).

4.1 Iterative Design
4.1.1 Gen 1. To overcome challenges encountered in neck-worn [53–55] and wrist-worn devices [56] designed

to detect hand-to-mouth gestures related to eating and smoking activities, we set out to develop wearable cameras

as a viable solution. We first developed Gen 1, which integrated a thermal sensor (GridEye 8x8 IR array) and RGB

camera (OV2640) onto a printed circuit board (PCB). The addition of thermal imaging as a secondary sensing

modality complemented the RGB data, particularly in detecting the wearer through the heat signature of pixels

in the foreground. Privacy concerns were addressed by orienting the sensors toward the user’s face and upper

torso. Through Gen 1, we improved data collection while reducing user discomfort and privacy concerns.

Challenges and lessons learned: Although the device was successfully deployed in free-living settings (see

Supplementary Section 9.2.1 for study protocol), the research team encountered three challenges during the

study: (1) the device being warm to touch while charging, (2) time synchronization-related inaccuracies, and (3)

limited field of view of the GridEye sensor. We addressed these challenges in the second iteration of our device.

4.1.2 Gen 2. To mitigate the problem of elevated device temperature during charging, we reduced the charging

current of the onboard Li-Po charger in Gen 2, trading increased charging time for enhanced user comfort. To

remedy time synchronization inaccuracies, we embedded a real-time clock (RTC) within the device powered by
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Fig. 3. Iterations through different generations (devices and magnetic back plates). Showcasing the transition from Gen1
to Gen2 to HabitSense, this figure reflects the design process of HabitSense, guided by expert insights and user feedback,
emphasizing key considerations such as privacy, affordability, and real-time detection. Pink regions indicate parts used for
orienting the sensor lenses with the activity of interest. All dimensions are in mm.

Table 3. Specifications of different generations of devices.

Device Sensors Weight (g) Volume (cm
3 ) Battery life (h) Connectivity Applications

Gen 1 Grid-EYE, OV2640 106 102.18 12 BLE Eating Detection

Gen 2 MLX9640, OV2640 132 114.75 14 BLE Eating Detection

Gen 3 LIS3DH, MLX9640, OV2640 87 93.75 17.6 BLE, WiFi

Eating/Smoking Detection

and EE Estimation

BLE: Bluetooth Low Energy, EE: Energy Expenditure.

the onboard Li-Po battery. Concurrently, to prevent time loss due to battery depletion, we refined the device’s

firmware to include a sleep mode feature; this mode deactivates power-intensive functions when the battery falls

below a set threshold, thus prioritizing RTC power supply and prolonging the device’s operational longevity up

to 20 days in sleep mode. To address the constraints posed by the limited 90° field of view and 8x8 pixel resolution

of the GridEye sensor, we transitioned to the MLX90640 thermal camera, which offered a wider 110° field of view

and a higher 32x24 pixel infrared array resolution.

Challenges and lessons learned: In the post-COVID landscape, the research and design team faced significant

assembly challenges due to a marked shortage of STM chips and other key components. Despite an improved

time-keeping mechanism extending battery life, time-drift issues led to unforeseen synchronization challenges,

prompting repeated manual time corrections and reprogramming efforts. The device’s non-modular architecture,

based on a fixed PCB layout, posed challenges to incorporating new sensors or computational modules, such as

machine learning accelerators, which would require a PCB redesign specific to the chosen accelerator. Feedback

from participants again highlighted the need for a device that was smaller, lighter, and more ergonomically

designed for comfort; that is, despite improvements from the first to the second generation, the device’s form

factor still did not achieve the level of unobtrusiveness necessary. Finally, an unfavorable center of gravity (see

Fig. 3) and an inadequately designed magnetic pad failed to maintain the device’s position consistently, leading to

frequent displacements and consequently shifts in lens alignment that affected the integrity of the data collected.

4.2 Design Implications
Drawing on insights from focus group discussions and our iterative design experience in Gen 1 and 2, we delineate

the guiding principles and objectives that informed the design process of the third-generation HabitSense device.
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4.2.1 Prioritizing user privacy through on-device obfuscation algorithms. Due to burden and biased data, our

thematic analysis and participant feedback from wearable camera studies indicate that health professionals

and users favor camera usage over traditional self-report methods; however, they caution against the potential

invasiveness and extensive field of view of cameras that may capture more than intended. Researchers have

addressed privacy concerns in wearable camera technology by proposing two key privacy-enhancing approaches:

first, orienting cameras toward the activity of interest to ensure focused capture [19] and second, applying

obfuscation algorithms to protect the confidentiality and integrity of the data collected [23]. Both the Gen 1 and

Gen 2 cameras were designed to orient toward the activity of interest; however, they lacked the capability to

execute obfuscation algorithms on-device due to the PCB’s configuration. Executing obfuscation algorithms offline

exposes sensitive information to risks that could jeopardize user privacy and the integrity of the data. Section 5.5

details the design and execution of our proposed on-device obfuscation algorithm, which serves as an effective

measure to protect user privacy by curtailing the exposure of sensitive data. Developing on-device obfuscation

algorithms necessitates preserving the data’s context to ensure that health professionals can accurately interpret

user activities, thereby balancing user privacy with the practical value of the data for behavioral analysis.

4.2.2 Acquiring minimal data for maximal utility in activity detection. The principle of least privilege (PoLP)
represents a foundational concept in secure design, advocating for minimal privilege allocation to programs

and users to fulfill their roles [21, 57]. This principle guides our approach to data acquisition in wearable

camera research. Continuous video recording in free-living studies generates vast, oftentimes irrelevant data,

burdens storage media, and depletes device battery. Moreover, acquiring unneeded data, even if obfuscated, raises

significant security concerns. We introduce the SECURE algorithm in Section 5.3 to navigate these issues. This

algorithm strategically activates sensors only upon detecting a high likelihood of the targeted behaviors, thus

limiting the data recorded to that which are pivotal for researchers and health professionals.

4.2.3 Modularity, reliability, reproducibility: pillars of system integrity and sustainability. The progression from

our Gen 1 to Gen 2 devices highlighted a pivotal lesson: addressing device malfunctions due to field damage

or component failures on the PCB required specialized technical proficiency for intricate repair work. Such

procedures are not only time-intensive but also impose significant costs if entire PCBs are to be replaced. Modular

designs not only facilitate expedited repairs and reduce costs but also bolster the device’s dependability and

consistency in production. The capacity for swift component testing and validation is crucial for the authenticity

of data in free-living studies. Our system’s modularity, supported by I2C communication and Qwiic connectors,

also promotes expandability and seamless sensor augmentation, thereby extending its utility to monitor various

health-risk behaviors. For instance, the platform could be reconfigured to assess UV exposure or outdoor time for

melanoma survivors, creating a versatile tool for various health applications [58–61]. Furthermore, in light of

the recent supply chain constraints on electronic components post-COVID, the capacity to interchange parts

highlights the critical importance of a modular system design. This adaptability not only ensures uninterrupted

research continuity but also contributes to the sustainability and recyclability of the device, as components can

be replaced or upgraded without the need for discarding the entire unit, reducing electronic waste and fostering

a more sustainable life cycle for research tools.

5 METHODS: DESIGN AND DEVELOPMENT OF THE HABITSENSE SYSTEM
This section explores the concrete application of our design implications in developing the novel HabitSense

system. It includes the rationale behind component selection and the iterative enclosure design process, resulting in

a comprehensive end-to-end system. Further, we detail our methodology for the free-living study and describe our

proposed SECURE algorithm to address PoLP, as well as our proposed real-time on-device obfuscation algorithms

to protect privacy. The section concludes with details about our proposed gesture-detection framework.
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Table 4. HabitSense hardware design space. Components used in HabitSense are marked by *.

Modules Alternatives Features
OV7670 VGA (640 x 480), 60mW/15fps(YUV)/maxRes

Camera (RGB) OV2640* 2 megapixel (1600 x 1200), 140mW/15fps(JPEG)/maxRes

OV5640 5 megapixel (2592 x 1944), 294mW/15fps(JEPG)/maxRes

Adafruit AMG8833 8x8 IR Array with 60° FOV, 0℃ to 80℃ range, 4.5 mA

Thermal Camera Grove MLX90641 16x12 IR Array with 110° FOV, -40℃ to 300℃ range, 12 mA

Adafruit MLX90640* 24x32 IR Array with 110° FOV, -40℃ to 300℃ range, 23 mA

Adafruit LIS3DH* 3-axis IMU, inexpensive, 2 uA

IMU Adafruit LSM6DSOX 6-axis IMU, built-in gesture recognition, 550 uA

Adafruit BNO055 9-axis IMU, ARM Cortex-M0, 13.7 mA

Adafruit PCF8523* Dedicated battery, inexpensive, Moderately precise

RTC Adafruit DS3231 Dedicated battery, High-precision

SparkFun RV-1805 Rechargeable supercapacitor, High-precision

Adafruit LM3671 600 mA, 90-95% efficiency, 2 MHz frequency

Voltage Regulator Adafruit TLV62569* Inexpensive, 1.2 A, 90-95% efficiency, 1.5 MHz frequency

Adafruit TPS62827 2 A, 90-95% efficiency, 2.2 MHz frequency

Fig. 4. Internal design schematic and electronic components used in HabitSense device.

5.1 Hardware Design Details
In our endeavor to develop HabitSense, a device capable of running obfuscation algorithms and real-time detection

with a focus on reliability and reproducibility, we embraced a modular approach in its design. The development

of Habitsense involved the following critical components: a microcontroller unit (MCU), custom shield, sensors,

and power management modules and support components such as MOSFETs and external memory (see Figure

4). Our meticulous review of the hardware design landscape, as outlined in Table 4, guided our choice of the

ESP32-cam development board to serve as the central platform for the system. This choice was motivated by its

affordability ($5), compatibility with a 24-pin camera, built-in SD card port, WiFi and BLE capabilities (to trigger

timely smartwatch or smartphone notifications to obtain further user context), a dual-core processor (240MHz)
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with substantial RAM (520 KB SRAM and an external 4MB PSRAM) for on-device machine learning through

TensorFlow Lite, and nine input/output ports that support various communication protocols (e.g., UART, I2C, SPI,

ADC, and DAC). To seamlessly integrate additional components such as the IMU, thermal camera, and RTC, we

engineered a custom shield facilitating easy connection to the ESP32-CAM board. This shield utilized the board’s

pins, channeling them to meet our data transfer, sensor integration, and power management needs. Addressing

the focus groups’ demand for high resolution and all-day battery life, we selected the OV2640 camera module

with a 160-degree fisheye lens. This module not only offers a 1600x1200 resolution with a power draw of 140 mW,

as detailed in Table 4, but is also equipped with an on-chip JPEG encoder to reduce the processing load on the

MCU and RAM usage. The camera’s standby mode draws less than 1 mA current. Should a future need arise for

higher resolution without power constraints, we can effortlessly switch to the OV5640 camera module, which

offers a 2592x1944 resolution but at a higher power consumption rate. To overcome the limitations of the 8x8 IR

array in Gen 2, we selected the MLX90640 thermal camera, comprising a 24x32 IR sensor array and a wide field of

view. For motion detection, we selected the LIS3DH triple-axis accelerometer for its low power consumption and

proficiency in discerning device orientation and user engagement. This empowers the system to actively discern

optimal periods for data collection or to execute complex real-time analyses. The accelerometer module can be

upgraded to more advanced IMUs like the BNO055 for sophisticated motion detection tasks. Furthermore, in

response to the drawbacks encountered with RTC integration in Gen 1 and 2, we opted for the PCF8523 RTC due

to its standalone power source, guaranteeing independent time keeping from the system’s main power supply

while also allowing for potential upgrades to high-precision RTCs like the DS3231 for users necessitating superior

time-keeping accuracy. To optimize the size, weight, and unobtrusiveness of HabitSense, we equipped the system

with a 3.7 V, 150 0mAh LiPo battery. We ensured the provision of stable voltage and current to all components by

integrating a high-efficiency (90-95%) voltage regulator (Adafruit TLV62569), which converts the input voltage

to a consistent 3.3 V in conjunction with a micro-USB LiPo charger. While this configuration met our initial

requirements, we designed the system with the flexibility to accommodate alternative voltage regulators, such

as those with a broader input range (4.5-21 V), for adaptation to higher-voltage power sources as necessary.

The charging circuit of our micro-USB LiPo charger, capable of delivering up to 500 mA, enabled a charge cycle

of approximately three hours and included LED indicators to signify full charge status. In contrast to directly

soldering the battery to the PCB in Gen 1 and 2, we adopted a JST connector for the battery in HabitSense,

simplifying the battery replacement process and allowing for adjustments in battery capacity according to user

needs.

The 3D-printed enclosure for the device underwent numerous iterations to refine its size, shape, mechanism,

materials, and printing technology (FDM to SLA, SLS), as seen in Figure 16. These modifications ensured secure

hardware containment, unobstructed camera views, easy micro-USB access, and compatibility with a neck lanyard

attachment. To address issues of detachment and instability observed in earlier designs, a new triangular magnetic

back plate was introduced (Figure 3). The final design also featured a hinge mechanism that orients the camera

lenses toward the wearer’s face, allowing for an activity-oriented, privacy-preserving design (see Section 9.3 and

Figure 16 for details regarding the iterative case design).

5.2 Study Design and Data Collection
Utilizing the final iteration of our embedded RGB-T camera system, contained within the final iteration of its

corresponding 3D-designed enclosure, we assembled multiple HabitSense devices and recruited 15 participants (7

smokers, 5 with obesity, 3 without obesity) from the Chicago area to participate in a free-living observational

study. Recruitment was conducted through online advertisements, seeking adults that were over 18 years of age,

fluent in English, who own a smartphone, with a body mass index (BMI) over 30 and under 30 kg/m
2
for people

with obesity and without obesity, respectively; to obtain enough data, smokers needed to average at least ten

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 101. Publication date: September 2024.



HabitSense: A Privacy-Aware, AI-Enhanced Multimodal Wearable Platform for mHealth Applications • 101:15

cigarettes daily. We screened and subsequently enrolled eligible participants, equipped them with a HabitSense

wearable device, and provided instructions for its use. Participants installed SNaPsHOT (Smoking, Nutrition,

and Personal Habit Observation Tool), an app developed at HABits Lab, and were instructed to log eating or

smoking events by opening the app and tapping the appropriate "I’m Eating" or "I’m Smoking" button to record a

timestamp for each activity. Over a week, participants wore the device during waking hours and used the app

to track their behaviors before returning the device to the lab and filling out surveys about their experience.

Notably, participants were not restricted to using the device exclusively during daylight hours or at night, with

the only directive being not to wear the device while showering. This precaution was necessary for their safety,

as the current version of the device is not waterproof.

5.3 SECURE: Sensor-Enabled Control for Ubiquitous Recording and Evaluation
Wepropose SECURE, a sensor-driven algorithm designed to optimize data collection for devices such asHabitSense,

ensuring the acquisition of only essential data useful for researchers, dietitians, or smoking cessation counselors

and the users themselves. The core idea of SECURE is to capture obfuscated RGB data that preserves privacy,

initiating recording solely during instances with a high probability of a person engaging in eating or smoking

activities. Unnecessary data acquisition results in (1) excess power consumption, (2) suboptimal utilization

of computational resources, and (3) potential privacy concerns due to over-collection of data. To tackle these

challenges, our algorithm employs a three-tiered hierarchical strategy tailored for real-time operations. We

leveraged the microcontroller’s deep sleep functionality, intermittently awakening it to assess the user’s device

wearing status using accelerometer data (see Figure 5). Subsequently, we analyzed a batch of thermal frames

for hand-to-mouth gestures, activating the recording of obfuscated RGB frames upon gesture detection before

setting the microcontroller back to its sleep state.

5.3.1 Pipeline.

Level 0. Our approach involves managing the clock frequency of the ESP32 MCU for power efficiency (see

Figure 5). By default, the MCU operates at 240 MHz, but we set it to enter deep sleep mode when not in active

use by using the ESP32’s ultra-low power (ULP) co-processor, reducing the clock frequency to 150 KHz. After a

predetermined time, the primary processor periodically awakens and operates at its minimum clock frequency

of 80 MHz. To preserve temporary variables during sleep mode, we store them in the system’s RTC memory,

effectively conserving energy during device inactivity.

Level 1: Training a wearing-detection model. Upon reactivation, the primary processor performs accelerometer

polling to determine the device’s wear status, as shown in Figure 5. We detect wear over a 150-sample window

(30 seconds) of three-axis accelerometer data by computing a set of ten running metrics: mean and variance of

the x, y, and z-axis; mean, standard deviation, and variance of the L2-normalization of the three axes (removing

gravity [energy]); and max change in energy differential. At the end of each 30-second segment, we compute

a wear/not wear prediction using a decision tree. The decision tree was trained with a maximum depth of 10

to run on the device efficiently. The metrics were chosen based on individual thresholding optimization using

f-beta scores. To stabilize and reduce false predictions, we only commit a change in wear-state when we observe

five sequential stable predictions (2.5 minutes; e.g., five repeats of "wearing" or "not wearing"). The state of "not

wearing" is rare since the device is usually switched off when doffed. Acceleration alone cannot detect all edge

cases of "not wearing" precisely when the device is in motion but not in the correct positioning; therefore, so as

to not miss data, the model was optimized to reduce false-negative predictions of wear time (0.60% false-negative

rate), allowing other levels to filter out false positives (20.26% false-positive rate).
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Fig. 5. Sensor-Enabled Activation Algorithm. Outlines the process from power-on to data recording, starting with deep sleep
mode, followed by accelerometer checks for the device being worn (level 1), thermal frame sampling for hand-to-mouth
gesture detection (level 2), and concluding with obfuscated RGB data recording, designed to record only essential data to
optimize battery life and memory use.

Level 2: Should a person be detected wearing the device at level 1, we activate our thermal camera through

a MOSFET and initiate sampling thermal frames. We then use a window of 12 contiguous thermal frames to

estimate the presence of potential hand-to-mouth gestures associated with eating or smoking gestures. To identify

these hand-to-mouth gestures, we developed a lightweight machine learning model capable of real-time detection

on-device. We trained a two-layer neural network with dense layers on a sequence of contiguous thermal frames

to incorporate the temporal aspect of thermal patterns associated with hand-to-mouth gestures. This is supported

by the distinct temperature signatures observed during eating or smoking gestures (see Figure 6). A potential

challenge when working with thermal frames lies in the fluctuations of thermal signatures caused by changes in

the surrounding environment, which we addressed by applying min-max normalization to the entire window of

thermal frames before their utilization in model training.

Data collection level: When a hand-to-mouth gesture is detected, the system starts capturing obfuscated RGB

video (obfuscation algorithm described in the following section) for a user-defined period of time. The on-device

obfuscation mechanism provides privacy-preserving data collection while providing visual confirmation (ground

truth) of the activities of interest.

5.3.2 Energy profiling. To determine the achievable hours of daily usage with our SECURE algorithm, we

calculated the device’s average current usage, considering its dynamic operation across level 0, level 1, and level

2 and the data-collection level. We estimated the average daily wear time (𝑡𝑤) and non-wear time (𝑡𝑛𝑤) based

on our wearing detection algorithm, as well as the average obfuscated recording time (𝑡𝑜𝑏𝑟 ). We simulated ’Z’
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Fig. 6. HabitSense gesture characterization. Illustrates smoking and drinking gestures in RGB and thermal data, with RGB
frames confirming gestures, normalized thermal frames showing temperature distribution, and flattened thermal histograms
highlighting the heat signatures during eating and smoking.

minutes of data recording following a detected hand-to-mouth gesture. Denoting the current consumption of

each level as 𝑖𝑙1 for level 1, 𝑖𝑙2 for level 2, and 𝑖𝑑𝑐 for data collection, we calculated the average daily current

consumption:

Average current =
(𝑖𝑙1 ·

∑
𝑡𝑛𝑤
𝑗
) + 𝑖𝑙2 · (

∑
𝑡𝑤
𝑗
−∑ 𝑡𝑜𝑏𝑟𝑗 ) + (𝑖𝑑𝑐 ·

∑
𝑡𝑜𝑏𝑟𝑗 )∑

𝑡𝑛𝑤
𝑗
+∑ 𝑡𝑤

𝑗

Careful consideration was given to the distinction between the system’s operational states. Specifically, when

the system operated in level 2, the device was being worn but not actively recording; this contrasts with periods

where obfuscated data recording was in progress, necessitating a higher current draw as seen in Figure 7.

Therefore, in the equation presented, we ensured the accuracy of our average current estimation by subtracting

the obfuscated recording time (𝑡𝑜𝑏𝑟 ) from the total wear time (𝑡𝑤 ) to reflect the differentiated current levels during

device wear (level 2).

5.4 On-Device Obfuscation Algorithm
On-device obfuscation strategically masks background details to maintain focus on foreground activities, par-

ticularly hand-to-mouth gestures relevant to eating and smoking detection. We utilize the thermal sensor’s

capabilities, leveraging the proximity of the wearer’s head and hands to the camera, which manifests as a distinct

heat signature. This thermal information is overlayed onto the RGB data to create a human thermal mask that

isolates and preserves the wearer’s head and hand imagery while rendering the surrounding region opaque.

Our on-device obfuscation algorithm utilizes an adaptive masking operation to overlay thermal camera data

onto RGB frames while accommodating disparities in resolution (640x480 for the RGB sensor and 32x24 for the

thermal sensor), as well as differences in field of view. The superimposition process requires a one-time initial
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Fig. 7. SECURE pipeline energy profiling current consumption during different levels.

Fig. 8. Sensor Calibration and RGB Obfuscation Process. Depicts calibration via a screen with heated and colored sections
for sensor alignment and shows how calibrated thermal data enables obfuscation in RGB sequences, keeping heads, hands,
and objects in hands clear while obfuscating the background.

calibration to synchronize the two data modalities. Following this calibration, the derived parameters apply

to all HabitSense devices, attributable to our 3D design that maintains a fixed positional relationship between

the RGB and thermal sensors. For calibration, we built a custom-designed calibration screen with four heaters

at the corners and a checkerboard pattern in the center, as shown in Figure 8. We positioned the HabitSense

device in front of this screen and recorded frames while actively running a calibration algorithm on the device.

This algorithm superimposed thermal masks onto the RGB frames while iterating through varying positional

and scaling parameters in real time. Upon manual inspection of the recorded data, we identified and utilized

the parameters that yielded the most accurate superimposition of the thermal mask on the RGB frames for
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Algorithm 1 On device thermal mask-based obfuscation

1: functionMaskCalibration(𝑏𝑢𝑓 𝑓 𝑒𝑟 , ℎ𝑒𝑖𝑔ℎ𝑡 ,𝑤𝑖𝑑𝑡ℎ,𝑚𝑙𝑥𝐹𝑟𝑎𝑚𝑒 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: offsetLeft, offsetRight, offsetTop, offsetBottom← calibratedOffsetValues
3: 𝑠𝑐𝑎𝑙𝑒𝑋 ← (𝑤𝑖𝑑𝑡ℎ − (𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿𝑒 𝑓 𝑡 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑅𝑖𝑔ℎ𝑡))/32.0 ⊲ Calculate X scaling factor

4: 𝑠𝑐𝑎𝑙𝑒𝑌 ← (ℎ𝑒𝑖𝑔ℎ𝑡 − (𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑇𝑜𝑝 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐵𝑜𝑡𝑡𝑜𝑚))/24.0 ⊲ Calculate Y scaling factor

5: for 𝑦 ← 0 to ℎ𝑒𝑖𝑔ℎ𝑡 − 1 do ⊲ Iterate over height

6: for 𝑥 ← 0 to𝑤𝑖𝑑𝑡ℎ − 1 do ⊲ Iterate over width

7: 𝑏𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥 ← (𝑦 ·𝑤𝑖𝑑𝑡ℎ + 𝑥) · 2 ⊲ Calculate buffer index

8: 𝑖𝑠𝐸𝑑𝑔𝑒 ← 𝑦 ≤ 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑇𝑜𝑝 or 𝑦 ≥ ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐵𝑜𝑡𝑡𝑜𝑚
9: 𝑖𝑠𝐸𝑑𝑔𝑒 ← 𝑖𝑠𝐸𝑑𝑔𝑒 or 𝑥 ≤ 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿𝑒 𝑓 𝑡 or 𝑥 ≥ 𝑤𝑖𝑑𝑡ℎ − 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑅𝑖𝑔ℎ𝑡
10: if 𝑖𝑠𝐸𝑑𝑔𝑒 then ⊲ If it’s the offset, blackout pixel

11: 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑏𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥], 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑏𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥 + 1] ← 0 ⊲ Zero out offset edge

12: else
13: if 𝑚𝑙𝑥𝐹𝑟𝑎𝑚𝑒 [𝑚𝑙𝑥𝐵𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥] < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then ⊲ Check threshold

14: 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑏𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥], 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑏𝑢𝑓 𝑓 𝑒𝑟𝐼𝑛𝑑𝑒𝑥 + 1] ← 0 ⊲ Apply threshold masking

15: end if
16: end if
17: end for
18: end for
19: return 𝑏𝑢𝑓 𝑓 𝑒𝑟 ⊲ Return the masked buffer

20: end function

Fig. 9. Obfuscation threshold determination.

our on-device obfuscation algorithm. Our algorithm [ALG 1] initializes by constructing a margin ribbon for

the RGB image, zeroing pixels within this margin, using the positioning and scaling parameters to account for

the smaller field of view of the thermal sensor (compared with the RGB). We rescaled the thermal frame to

match the dimensions of the active area of the RGB image, excluding the margin. Subsequently, the algorithm

evaluates the thermal value of each pixel against a predetermined threshold, masking those in the visual buffer

that fall below this criterion. Our experiments, illustrated in Figure 9, explored several strategies for determining

this threshold. Initially, we considered fixed temperatures based on the human temperature range, but these
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Fig. 10. HabitSense Exploration and Labeling Platform (HELP) web application (left) and the Smoking, Nutrition, and Personal
Observation Tool (SNAPSHOT) mobile application (right).

proved suboptimal due to the influence of the device’s distance from the subject’s face and ambient temperature

variations. Consequently, we adopted an adaptive approach. Although the Otsu method (used in prior work

[22]) for image binarization was tested, we found that computing the average temperature of the pixels in each

thermal frame yielded results comparable to those of Otsu, with the added benefit of reduced computational

complexity for on-device execution. Finally, the algorithm generates a composite image that accentuates thermally

notable regions, focusing on pertinent activities such as the clear depiction of the wearer’s head, hands, and held

objects—food, a glass of water, or a cigarette—while the surrounding area is obfuscated to safeguard the privacy

of both the wearer and any non-consenting bystanders.

5.5 Gesture Recognition Framework
Having established an efficient data acquisition strategy, we aim to investigate the utility of HabitSense data

in identifying instances of eating and smoking behaviors. To ascertain the effectiveness of our collected data

in identifying eating and smoking behaviors, we annotated the raw data acquired during the free-living study,

thereby enabling the training of machine learning models for behavior detection.

5.5.1 Data annotation: HELP and SNAPSHOT. Data annotation represents a significant commitment of time and

effort in the data processingworkflow.We explored existing annotation tools, such as labelImg and label studio [62],

to annotate the start and end of gestures while simultaneously displaying multimodal data (RGB/thermal/IMU)

during the annotation process. However, we found that these platforms are predominantly optimized for object-

based annotation and do not provide, by default, the functionality for annotating gesture-specific segments or

visualizing multimodal data in a manner that aligns with our project requirements. To address these challenges,

we designed and developed the HabitSense Exploration and Labeling Platform (HELP) [Fig. 10], a dedicated

system for streamlined data annotation of raw data acquired from video-based behavior monitoring tools.

During our free-living study, we deployed SNAPSHOT, a multi-platform mobile app developed in Flutter,

allowing participants to document their eating and smoking activities while wearing the Habitsense device.

We engineered the HELP platform such that annotators could reference events logged via the SNAPSHOT

application to more efficiently find eating and smoking activities, given the prevalence of inactivity in the dataset.
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We systematically annotated the start and end of hand-to-mouth gestures associated with eating and smoking

activities, in addition to distinguishing periods of device wear from non-wear. The onset of a gesture was defined

as the hand approaching the mouth for food intake or puffing from a cigarette, and its termination was marked

by the hand retracting from the mouth.

5.5.2 Gesture recognition using state-of-the-art spatiotemporal architecture: Timesformer. In the context of con-

sumption behaviors, the primary gesture preceding eating or smoking is a hand-to-mouth gesture. While 3D

convolutional networks have successfully identified spatiotemporal gestures, the emergence of state-of-the-art

models, notably transformers [63] built upon attention mechanisms, introduces more efficient approaches for

training video data. TimeSformer [64] introduces a significant shift in video analysis using self-attention mecha-

nisms instead of traditional convolutional methods. This change leads to better classification accuracy, quicker

training times, and improved efficiency in testing, allowing the model to process long video sequences with

spatial and temporal context effectively. Utilizing this architecture, we could also generate self-attention maps,

which illuminate the model’s focal areas, thereby rendering the model not only effective but also interpretable

[65, 66].

We trained binary (eating vs. none, smoking vs. none, hand-to-mouth vs. none) and multi-class TimeSformer

(eating vs. smoking vs. none) classifiers using annotated RGB and thermal data to detect eating and smoking

activities. For each of the four classifiers, we train and test models on (1) RGB-only data; (2) Thermal-only sensor

data; (3) RGB Obfuscated-blur (lower-privacy version that blurs the background, gaussian blur with radius 15);

and (4) RGB Obfuscated-mask (a high-privacy version masking all background pixels). Through surveys, these two

obfuscation methods effectively reduced privacy while maintaining contextual information surrounding hand-to-

mouth activity [23]. To inform the sensors and data type used in the online model (Thermal-only, Obfuscated-blur,

and Obfuscated-mask), we perform significance tests using an analysis of variance (ANOVA), followed by post hoc

pairwise t-tests. Our data were segmented into video clips, each defined by the commencement and conclusion

of the specific gesture pertinent to the model—eating, smoking, or hand-to-mouth. For the "none" class clips, a

distribution was established mirroring the gesture lengths of the respective positive classes. Using this distribution

as a benchmark, we randomly selected sequences of frames for the "none" class, ensuring they adhered to the

established length distribution of the positive classes. These clips were then resized to a short edge of 256 pixels

following the procedures specified in [67]. We maintained a balanced dataset with an equal representation of

50% for both positive and negative classes. For validation, we implemented a leave-one-participant-out (LOPO)

cross-validation strategy, with an 80:20 split for training and validation.

5.5.3 Gesture recognition using quantized neural networks on-device. Training state-of-the-art offline models

demonstrated the potential of the data collected by HabitSense, but for real-world applications, models that

can detect hand-to-mouth gestures associated with eating and smoking in real time are essential. Based on the

winning data type from the significance test, we train and test the data type that provides the greatest privacy

preservation without impacting the accuracy of activity detection. For the real-time detection capability and to

capture the temporal nature of the gestures, we selected a window size of 12 frames. This selection was grounded

by the distribution of the length of eating and smoking gestures (Supplementary Figure 21). We also mirrored

the approach used in the offline models to select the negative class, ensuring class balance during training. We

used a training-to-validation ratio of 80:20 and performed leave-one-out cross-validation to evaluate the models.

The on-device models, based on a two-layer neural network, were quantized to enhance the real-time detection

performance. The inference time was estimated by calculating the number of multiply-accumulate operations

(MACs) from the model weights/parameters. Then, by knowing our MCU’s number of operations per second,

dictated by its clock frequency, we estimate the inference time.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 101. Publication date: September 2024.



101:22 • Fernandes et al.

6 RESULTS
In this section, we present (1) the statistical data from our study; (2) an evaluation of our device conducted with

15 participants (comprising 8 people with and without obesity and 7 smokers), highlighting the advantages of

capturing smoking and eating episodes through obfuscated RGB video, triggered by the SECURE algorithm; (3)

the evaluation of machine learning algorithms for both the offline and real-time detection of eating and smoking

behaviors; and (4) the positive feedback received for HabitSense following its third iteration.

6.1 Data Statistics
In total, we collected 46,060 minutes (768 hours) of data with a sampling rate of 5 Hz. The recording duration

for each participant ranged from 1,644 to 4,901 minutes (27.4-81.7 hours). Table 5 presents the demographic

characteristics of the participants. From these recordings, we captured 10,495 hand-to-mouth gestures across all

participants (see Table 10). On average, each participant had 807 hand-to-mouth gestures (min=35, max=1726,

std=531). Each hand-to-mouth gesture is represented by a start frame and an end frame. By analyzing the frame

lengths of all the hand-to-mouth gesture clips captured across all participants, we found that, on average, each

hand-to-mouth gesture clip consisted of 12.2 frames (min=9.39, max=20.10, std=2.98). Supplementary Figure 21

provides a visual representation of the distribution of hand-to-mouth gesture clip counts per frame length. The

combined duration of all the hand-to-mouth intakes amounted to 420.91 minutes (7.02 hours) of smoking, eating,

or drinking gestures. When examining individual participants, the time spent smoking, eating, and drinking

varied from 1.7 to 97.2 minutes (min=1.7, max=97.2, std=25.32). Two participants were omitted from our data and

analysis because of device malfunctions, including water damage, during the free-living study.

Table 5. Demographic information of participants.

Participant Age Sex Race Hispanic/Latino Smoker Hours recorded Ave. hrs per Day

P1 36 male white no no 27.4 5.5

P2 22 male white yes no 60.1 7.5

P3 26 female black no no 59.3 4.2

P4 28 female white yes no 62.9 9.0

P5 47 female black no no 61.9 6.9

P6 40 female white no yes 62.8 7.0

P7 43 female black no yes 69.1 9.9

P8 27 male black no yes 81.7 7.4

P9 27 female white no yes 47.0 5.9

P10 69 male white no yes 74.3 9.3

P11 31 male asian no yes 36.5 7.3

P12 30 female white no yes 70.5 8.8

P13 25 female white no no 54.4 5.4

Mean 59.1 7.2

Total 768.0

6.2 SECURE Algorithm Evaluation
6.2.1 Assessment of volume of data captured through the SECURE algorithm. Using our pipeline, we evaluated
the device wear-detection and hand-to-mouth gesture-detection models and, by assessing different parameter

settings, determined the minimum amount of data required to capture the maximum number of hand-to-mouth

gestures associated with eating and smoking (see Figure 11).
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(~2.4 sec) (~12 mins)(~1.2 mins)

G (H2M = 1) G (H2M = 2)
R (H2M = 1) R (H2M = 2)

G: Proportion of captured hand-to-mouth gestures related to eating and smoking
R: Proportion of data recorded using SECURE activation pipeline
H2M: Count of hand-to-mouth gestures detected across five contiguous segments.
89.8

52.4

Fig. 11. SECURE pipeline parameter determination. This figure shows the effects of varying parameter settings on data
collection. The graph displays the effectiveness of choosing a threshold of one hand-to-mouth gesture across five segments
and a recording duration of 360 frames (1.2 minutes), achieving 89.8% capture of eating and smoking gestures with only
52.4% data recorded.

Wearing detection (Level 1). A decision tree was trained with an 80/20 train/test split on 150-second aggregated

samples, resulting in an F1-score of 0.86 on "no wearing" predictions and 0.98 on "wearing" predictions. On

the ESP32 microcontroller, the time to compute intermediate values for aggregate metrics at each pull of the

accelerometer was negligible (<1 𝜇s), whereas the time to compute metrics for each window was measured at 24

𝜇s and the decision tree inference time at 5 𝜇s. Overall, this time was insignificant compared to other steps in the

pipeline.

Hand-to-mouth gesture detection (Level 2). Our two-layer network-based hand-to-mouth gesture detection

model achieved an F1-score of 0.71. As detailed in Table 6, the model occupied 134 KB of memory and necessitated

48 ms for on-device inference time. Additionally, due to the model’s training on a 12-frame window, frame

normalization on the device required an extra 24 ms, resulting in a total inference time of 72 ms.

Table 6. Performance of each SECURE pipeline level of the system based on the leave-one-participant-out evaluation.

Level Precision Recall Accuracy F1-score Model Size Inference Time

Wearing detection (level 1) 0.97 0.99 0.97 0.98 15.4 KB <50 𝜇𝑠

Hand-to-mouth detection (level 2) 0.79 0.67 0.74 0.71 134 KB 48 + 24 ms
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Table 7. Percent of data recorded versus percent of captured gestures and resulting storage and energy savings using
the SECURE pipeline. Utilizing the SECURE pipeline, we captured approximately 89.8% of hand-to-mouth gestures while
recording only 52.4% of the data, thereby conserving about 47.6% of storage space and achieving 30.0% energy savings.

Participant Recorded (%) Hand-to-Mouth Captured (%) Storage Saving (%) Energy Saving (%)

P1 26.35 77.37 73.65 47.12

P2 72.25 96.43 27.75 16.54

P3 60.52 90.27 39.48 20.38

P4 60.82 93.96 39.18 22.25

P5 50.28 82.90 49.72 30.92

P6 55.15 86.66 44.85 23.81

P7 49.61 94.48 50.39 27.59

P8 41.89 93.64 58.11 43.57

P9 44.50 72.99 55.50 33.09

P10 71.94 96.63 28.06 16.63

P11 33.34 96.76 66.66 60.53

P12 64.38 96.85 35.62 18.51

P13 50.36 88.23 49.64 29.33

Mean 52.41 89.78 47.59 30.02

6.2.2 Energy profile. We evaluated the energy efficiency of our SECURE pipeline by measuring the HabitSense

system’s current consumption through the INA219 current sensor at each SECURE pipeline level, as depicted in

Table 8. The SECURE pipeline’s design inherently minimizes power usage. It maintains the system in its lowest

power state—level 0—when idle, using only the ULP co-processor and drawing approximately 2.8 mA. Based on a

1500 mAh lithium polymer battery and assuming a constant current draw, this translates to a standby time of

approximately 2.5 weeks per charge. During active periods, the system periodically polls the accelerometer to

determine the device wear status, consuming 57.44 mA. If worn, the thermal camera is activated via a MOSFET

to scan for hand-to-mouth gestures, increasing consumption to 79.44 mA. Should no gestures be detected, the

system would operate for approximately 18 hours; however, upon detecting a gesture, it would begin recording

obfuscated data using the RGB camera and storing data on the SD card, necessitating a current draw of 139.60

mA. Using the SECURE pipeline, we captured approximately 89.8% of hand-to-mouth gestures while recording

only 52.4% of the data, thereby conserving about 47.6% of storage space and achieving 30.0% energy savings

(Table 7).

Table 8. Energy requirements for each level of the SECURE pipeline.

Level Active Components Power (mW) Current (mA)

Level 0 ULP co-processor 10.36 2.80

Level 1 ESP32 (80 MHz), accelerometer 212.52 57.44

Level 2 ESP32, accelerometer, thermal camera 295.03 79.74

Data collection ESP32, accelerometer, microSD thermal and RGB cameras 471.42 139.60

6.3 Evaluation: Usability of Data Collected
In this section, we evaluate the overall performance of the method by assessing the F1-score for all eating and

smoking activities of all the participants.
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Fig. 12. Performance comparison of TimeSformer models (offline). H2M, hand-to-mouth.
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Fig. 13. Performance comparison of 2-Layer Neural Network, on-device models. H2M, hand-to-mouth.

6.3.1 Eating and smoking recognition offline analysis. We trained a series of offline models for each activity

and input data, reporting the F1 score; Figure 12 highlights these results. The TimeSformer architecture-based

classification models excelled in hand-to-mouth gesture recognition with an F1-score of 92.7%, closely followed

by the obfuscated-blur model and eating detection using RGB data, each achieving 89.7%. However, for smoking

detection, the results of RGB versus thermal were much closer, with thermal trailing closely behind RGB video by

85.4%. In addition to the models trained on individual activities, we explored multiclass models, which yielded less

effective results, with an F1 score of 82.6% in RGB, thermal performance slightly below RGB at 80%, and obfuscated-

blur around 71%. We observed a trend where the RGB-trained model generally outperformed models using only

thermal data; however, unaltered RGB images pose privacy concerns and are computationally problematic on

embedded systems. As a result, we aimed to process either the thermal, obfuscated-blur, or obfuscated-mask

on-device.

6.3.2 Assesing the potential of on-device detection for real-time application. A one-way ANOVA revealed a

statistically significant difference in F1-score between at least two groups (p<.05) for all eating, smoking, hand-to-

mouth, and multi-class activities. Post hoc pairwise analyses indicate no significant difference between thermal

and obfuscated-blur (p<.05 for all activity types; eating, smoking, hand-to-mouth, and multi-class). However, post

hoc pairwise analyses indicated a significant difference between obfuscated-blur and obufscated-mask (p>.05 for

all activity types; eating, smoking, hand-to-mouth, and multi-class). In light of these findings, we considered
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Fig. 14. Participant responses to burden metrics concerning (A) privacy, (B) obtrusiveness, (C) willingness-to-wear, and (D)
physical comfort.

thermal to be the optimal target for the input of the on-device model due to the drastic reduction in input data

(pixel count) and given no significance difference between thermal and obufscated-blur.

Using the internal input data, the on-device models were quantized two-layer fully connected neural networks

(reduced size and inference time). These models were expected to have reduced performance due to these

optimizations. The best-performing model, individual smoking detection, yielded an F1-score of 75.7%, whereas

hand-to-mouth gesture recognition yielded an F1-score of 71.1%. Although the precision and recall of the smoking

model were closely matched, with an approximately 1% difference, the hand-to-mouth gesture model displayed a

much higher precision than recall.The model for eating detection produced an F1-score of only 59.5%, which

warrants future investigation. As with the offline model, the multi-class model performed below the individual

models with an F1-score of 58.8%.

Table 9. On-device smoking detection model (thermal data), participant-level analysis.

Precision Recall F1-score Accuracy

P6 0.61 0.65 0.63 0.62

P7 0.79 0.94 0.86 0.84

P8 0.75 1.00 0.86 0.83

P9 0.89 0.39 0.54 0.67

P10 0.84 0.79 0.81 0.82

P11 0.80 0.82 0.81 0.81

P12 0.70 0.88 0.78 0.76

mean 0.77 0.78 0.76 0.77
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7 DISCUSSION AND LIMITATIONS

7.1 User Burden and Privacy Evaluation
In the study of participants’ perceptions regarding the device, several key insights emerged (Figure 14). When

inquiring about participant concerns regarding the information shared by the device (panel A), 87% (13/15)

of participants had limited to negligible worries, implying minimal privacy concerns related to the data. For

comparison, 77.7% (14/18) of participants who completed the Gen 2 study and 77.6% (38/49) participants who

completed the Gen 1 study reported being "a little bit" or "not at all" concerned about what information gets

shared by the device. When asked how long participants would be willing to wear the device for its health-related

benefits, the average intended wear time was approximately 14.73 hours daily (panel B). It is worth noting,

however, that a standard deviation of 6.59 hours was observed, and the wear time spanned a range from a

minimum of 4 hours to a maximum of 24 hours daily. The actual mean daily wear time of HabitSense study

participants was 7.2 hours, compared with 4.3 hours observed in the Gen 2 study. Together, these results indicate

a 3 hours-per-day improvement in wear time between Gen 2 and HabitSense. Within the framework of social

acceptability, approximately 53.33% of the participants assumed a neutral stance, indicating no distinct preference

concerning their visibility while wearing the device in public (panel C). Meanwhile, about 47% of the participants

were comfortable with being seen wearing the device in public spaces. One participant commented on the social

comfort of the system, saying, "I did not really notice it until I saw people looking at me. They didn’t ask, but

they ‘asked with their eyes.’ It didn’t bother me, but I was maybe a little conscious of it." Another participant

said, "Nobody was even looking at it. They probably thought it was a radio or something." These responses and

quotations suggest that the HabitSense wearable constitutes a meaningful step forward in the mitigation of social

burden for wearable camera systems. Lastly, 80% of participants found the device comfortable in all situations

they encountered, whereas only 20% reported instances of discomfort while wearing the device (panel D).

7.2 Privacy Algorithm: SECURE
At level 1 of the SECURE pipeline, acceleration data were used to determine whether the device was worn.

However, this method faced challenges in detecting edge cases where the device, while active, was oriented

similarly to when worn (while seated or stationary) but placed on the hook of a door hanger. However, the

model was optimized to minimize false negatives (0.6%), i.e., instances where wearing was falsely detected as

non-wearing, as this is more critical to the system’s functionality. Future exploration could involve integrating

gyroscopic data to enhance the detection of the orientation of the device. This addition, coupled with a revised

case design that limits similar wear orientations when the device is not worn, may improve performance. Another

potential avenue is to leverage the thermal camera in wear detection, provided that it is aligned with the system’s

energy budget constraints.

An important observation from Table 7 is the suboptimal performance of the SECURE system on participant

P9, who was a smoker. Further investigation into the data, as seen in Table 9, showed that the smoking gesture

of P9 often involved covering the cigarette tip with their hand, which likely contributed to these detection

errors. Moreover, most of the participant’s eating and smoking activities occurred inside a car, an environment

characterized by higher indoor temperatures, and less contrast in heat signature. Future work should address the

performance of eating and smoking in such scenarios. The final step of the SECURE pipeline involves recording

obfuscated data using thermal information to mask the wearer and obfuscate background pixels. We can achieve

a frame rate of about one frame per second with an image resolution of 640x480. In comparison, on-device

obfuscation techniques have been implemented in various camera systems such as privacyCAM [49], which

encrypts the facial region; trustCAM [50], which applies a Canny edge filter to the face; and trustEye [51], which

renders the entire frame with a cartoon effect. These systems can operate at higher frame rates, with privacyCAM

and trustEye testing at lower resolutions of 320x240. TrustCAM has achieved on-device obfuscation at 640x480
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resolution and a higher frame rate of 5 frames per second. However, these systems are not designed as wearable

technologies with all-day battery life, nor do they utilize thermal data for masking. Future work should focus on

enhancing the frame rate at higher resolutions.

7.3 Comparative Analysis of Model Performances for Gesture Classification
In our study, we trained the on-device models using thermal data to achieve feasible inference times and to comply

with the device’s resource limitations while enhancing privacy for real-time applications. Our benchmarks using

TimeSformer models with thermal data demonstrate performance comparable to obfuscated blur models across

all scenarios. However, the on-device models demonstrated superior performance in detecting smoking gestures,

with an F1-score of 75.7%, compared with eating gestures, which had an F1-score of 60%. This disparity likely

stems from the distinct thermal signatures of smoking gestures, which are more discernible in thermal imagery.

Previous studies, including work by Bi et al. [35], have investigated eating detection using RGB data from head-

mounted cameras, achieving F1-scores of 73.8% and 78.7% with 3D CNNs and slow-fast networks, respectively. In

contrast, our use of TimeSformers on thermal data alone yielded F1-scores of 85.4% for smoking and 85.6% for

eating, highlighting thermal data’s potential to learn eating gestures. Despite these promising results, deploying

transformer-based architectures on-device remains challenging. However, recent advancements in transformer

technology, such as one-bit based mixtures of experts [68], and ongoing research into on-device integration

[69, 70], suggest potential pathways for implementation. To overcome the limitations of resource-constrained

devices, combining thermal and RGB data could enable smaller models to extract more comprehensive features,

thereby improving on-device eating gesture detection.

7.4 Model Robustness
As depicted in Figure 19, our eating and smoking detection models demonstrated robustness not only during the

night or dimly lit conditions but also during scenarios of intense head movement. The training dataset included

participants with a diverse representation of age, sex, race, and ethnicity, as detailed in Table 5. To further evaluate

robustness, we implemented an additional experiment to assess the impact of incorporating additional participant

data into our model training. The results, illustrated in Figure 20, indicated that the F1-score of our hand-to-mouth

detection model initially increased and then reached a plateau, showing no significant improvement as more

participant data were added.

7.5 Cigarette vs. E-Cigarette: Gesture Detection Challenges
HabitSense aims to detect hand-to-mouth gestures associated with eating and cigarette smoking. Despite the

increasing prevalence of electronic cigarettes (e-cigs), smoking remains the predominant preventable cause of

death in the U.S., responsible for approximately 480,000 deaths annually [4], or approximately one in every

five individuals. Therefore, in our free-living study, we recruited participants who primarily smoked cigarettes,

averaging at least ten daily (recruitment details in section 5.2). However, we also found instances of e-cig use

in our study data. Such instances were labeled as non-cigarette-smoking gestures, resulting in high precision

observed in our LOPO analysis for P8. This is detailed in Table 9 of the on-device smoking detection model

(thermal data), participant-level analysis. It is important to note that because the SECURE pipeline does not rely

on specific eating or smoking detection models for data recording, relying instead on hand-to-mouth gestures, it

will still record e-cig use instances.

The growing prevalence of e-cig use, which poses confounding factors for both conventional smoking and the

recognition of eating gestures, warrants dedicated investigation [71]. To evaluate the effectiveness of HabitSense

on different e-cigs, we performed preliminary tests on three popular devices on the market: Juul [72], Posh Max

5200 [73], and IQOS [74]. Figure 15 illustrates the heat signatures of a conventional cigarette versus the e-cigs
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Fig. 15. Heat signature, cigarette vs e-cigarettes

tested. Although none of the e-cigs tested produced pronounced heat signatures, the IQOS signature is more

promising than the Juul and Posh Max signatures, suggesting the potential for future iterations of HabitSense to

detect e-cigs that operate based on thermal-passing heating mechanisms.

The detection of e-cigs that do not have thermal-passing mechanisms may require the integration of more

sophisticated techniques and the fusion of data from both thermal and RGB cameras. This could be made feasible

through HabitSense, which supports both modalities, unlike other wearable camera devices such as Smokemon

[24], which only includes a thermal camera. Future work can also test the benefits of a gas sensor or enhanced

data collection to discern subtle differences in hand-to-mouth gestures between conventional smoking and e-cig

use.

7.6 Thermal Sensor Selection
In the transition from the first to the second generation of devices, we replaced the thermal camera with the

MLX90640 thermal IR array, which comprises a higher resolution (32x24) and an expanded field of view (110

degrees). This enhancement improved the recognition of hand-to-mouth gestures, increasing the efficacy of the

SECURE pipeline. However, the MLX90640 has a notable current draw of approximately 23 mA, as reported in the

sensor specifications. During the operation of HabitSense, predominantly at level 3 of the SECURE pipeline, the

thermal camera was responsible for 28% of total energy consumption. Another option exists with the MLX90641

sensor, which has a 110-degree field of view but a lower pixel count (16x12), better noise suppression, and lower

current draw (12 mA). However, future work is needed to explore the trade-off between improved temperature

noise and pixel resolution. If functionality is feasible, this substitution would decrease the current draw at level 2

of the SECURE pipeline from 79.74 mA to 68.74 mA, thus reducing the total energy consumption at level 3 by

up to 14%. Another sensor, which would require significant hardware rework due to the higher supply voltage,

is the Omron D6T-32L-01A MEMS thermal sensor, which has 1024 pixels (32x32) and a current draw of 12 mA.

Future efforts to scale HabitSense should include efforts to optimize the selection of sensors based on the results

of this work.

8 CONCLUSION
This research has successfully demonstrated the practicality and efficacy of the HabitSense platform, a novel,

open-source RGB-T wearable camera system designed for the continuous monitoring and automated detection

of health-risk behaviors such as eating and smoking. Informed by thematic analysis of focus groups with 36

experts, including dietitians and smoking treatment specialists, and bolstered by our iterative design, HabitSense

balances user privacy considerations with the need for automated detection of hand-to-mouth activity. One of

the system’s most notable attributes is its SECURE algorithm. SECURE efficiently triggers obfuscated RGB video

recording, significantly improving storage savings, reducing battery consumption, and minimizing overall data

accumulation, while still maintaining robust event capture rates. Our comprehensive evaluations, in real-world
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scenarios with 15 participants, have validated the high user acceptability and willingness to use HabitSense. Our

study yielded extensive RGB-T data (768 hours), enabling the continued development and testing of advanced

machine learning models for offline and real-time on-device analysis, which are robust to free-living environments

with varying lighting conditions and head posture. HabitSense offers a low-cost, modular, and scalable solution

for reliable all-day data collection while also addressing critical privacy concerns through on-device obfuscation.

Our evaluation shows no significant difference between thermal-sensing and obfuscated RGB data in detecting

eating and cigarette smoking, paving the way for two privacy-conscious approaches to the detection of health risk

behaviors. Finally, the ability of HabitSense to objectively monitor health-risk behaviors in real-world scenarios,

reducing reliance on self-reporting, elevates the practicality and appeal of wearable cameras in healthcare contexts,

setting a new benchmark for the design, development, deployment, and translation of such technologies.
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9 SUPPLEMENTARY

9.1 Related-works: Wearables for Eating and Smoking Detection
9.1.1 IMU-based sensing. Wearable technologies like smartwatches, commonly equipped with inertial mea-

surement units (IMUs), have gained popularity for automatically detecting eating and smoking activities. This

functionality helps overcome certain limitations inherent in self-reporting methods. IMU-based approaches to

eating detection largely focus on extracting hand-to-mouth gestures from motion data, typically collected at the

wrist [16]. For instance, Morshed et al. [75] achieved real-time eating detection at the meal level by training a

classifier to recognize eating gestures using smartwatch accelerometer data. Other on-body IMU sensor locations

have also been explored. One example is the earbud accelerometer in the study by Morshed et al. [76], designed to

detect chewing motions. These earbud sensors are less influenced by confounding hand-to-mouth gestures typical

of wrist-worn IMUs, enabling more precise differentiation between eating activities such as meal consumption

and snacking.

IMUs have also supported multimodal systems where non-IMU sensors primarily detect eating activities, such

as in a study by Zhang et al. [55]. Their necklace device employs proximity and ambient light sensors aimed at the

jaw to measure chews directly, while the IMU supplements by estimating the lean-forward angle, enhancing the

prediction model. Bedri et al. [34] embedded an IMU and proximity sensor into eyeglasses. This design enables

detecting eating gestures through hand-to-mouth proximity and captures chews from IMU-registered movements

of the facial muscles. Similarly, recent developments feature the MyDJ device [77], which integrates both IMU

and piezoelectric sensors onto eyeglasses for eating detection.

IMU-based systems have also been explored for smoking detection. Añazco et al. [78] demonstrated the

efficacy of wrist-worn IMUs in detecting smoking-related hand gestures, successfully differentiating them from

confounding activities such as eating and drinking. However, due to variations in gestures across individuals,

their method lacks generalizability. To address this, Senyurek et al. [79] focused on analyzing gesture regularity

from wrist-based IMUs, although performance significantly decreased in free-living settings. Further attempts

to enhance performance led Senyurek et al. [31] to integrate a smart lighter with a wrist-worn three-axis

accelerometer. Still, inconsistencies arose due to self-report errors and instances of participants using their

lighters instead of the provided smart lighter.

To summarize, although wrist-worn IMU sensing modalities are recognized for their ability to detect eating

and smoking activities, they face challenges in practical application. These include false positives from unrelated

movements, issues with sensor positioning (i.e., dependency on the dominant hand), and difficulties in generalizing

across different individuals [16]. However, IMU-based sensors continue to supplement multi-modal devices [26].

9.1.2 Acoustic-based sensing. Another area explored uses acoustics to capture sonic features of chews, swallows,

and jaw movements. Bi et al. [27] found that chewing sounds could be retrieved from audio collected with a

contact microphone on the mastoid bone. Nyamukuru et al. [28] improved on this approach by implementing a

shallow gated recurrent unit neural network optimized for execution on a low-power microcontroller, detecting

mastoid chewing sound with greater accuracy and efficiency. Acoustic sensors have been employed in multi-modal

systems, such as in a study by Bedri et al. [29] where a neck-positioned microphone detects swallowing sounds.

Additionally, an earbud equipped with an IMU and a proximity sensor was used to identify chewing. Acoustic

sensing modalities have also been explored to detect smoking activities. Echevarria et al. [30] demonstrated the

potential of wearable acoustic sensors, designed for respiratory monitoring, to identify smoking behavior by

capturing the distinct acoustic properties of smoking inhalation. However, microphones are susceptible to noise

interference, particularly in free-living environments. Moreover, using microphones raises significant privacy

concerns in everyday settings [19].
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9.1.3 Alternate sensing modalities. Several studies have explored alternate sensing modalities and methodologies

to monitor cigarette smoking behavior precisely. One approach involved the development of the PACT system

[80], which integrated a comprehensive sensor suite consisting of a respiratory inductance plethysmograph

and hand gesture sensor capable of capturing multiple behavioral indicators associated with cigarette smoking.

Using support vector machines trained on data from the PACT system, Lopez-Meyer et al. [32] highlighted

the feasibility of autonomously identifying smoke inhalations by continuously monitoring respiratory patterns

and hand-to-mouth gestures. Although this methodology holds promise for delivering precise and objective

evaluations of smoking behaviors, the data collection and assessment of the PACT system were conducted within

a controlled environment, limiting generalization to free-living contexts. Studies have also explored the feasibility

of using wearable sweatbands to monitor nicotine levels in the sweat, thereby inferring smoking behavior [81].

Although the prospects appear promising, the frequent need for calibration, coupled with potential contamination

from passive smokers’ smoke deposition, could compromise the accuracy of readings. Battalio et al. conducted a

micro-randomized trial using wrist-worn and ECG sensors, intending to refine a just-in-time-adaptive stress

management intervention to mitigate smoking relapse [82]. This research emphasized the potential of wearable

sensors in facilitating real-time data acquisition, thereby supporting personalized interventions.

Although current methods for automated detection of eating and smoking are promising, deploying these

methods in free-living settings often relies on self-reporting or external tools, which can introduce inaccuracies

and biases into the ground truth data. Additionally, there is no visual evidence to confirm the occurrence of the

events.

9.2 Prior Deployment Protocols
9.2.1 Gen 1 Study. With the Gen 1 device, we collected 14 waking days of data with 60 participants in a free-living

setting. Participants attended a laboratory visit to introduce them to the Gen 1 device and calibrate the neckband

for optimal body placement. Participants were then instructed to take the device home, equip and turn on

the device each morning, perform a synchronization event by aiming the device at a digital clock smartphone

application, wear the device throughout the day, remove and turn off the device at the end of the day, and charge

the device overnight each night. Participants were informed that recording status was indicated by a blue LED

light inside the device’s enclosure (blinking = on, solid/absent = off).

9.2.2 Gen 2 Study. We deployed the Gen 2 device in a free-living study to collect 14 waking days of data from 30

participants, systematically varying which obfuscation technique (blurring, edge obfuscation, cartoon/avatar

obfuscation, or raw data/no obfuscation) each participant’s device used to test the impact of obfuscation method

on wear time. After a laboratory visit to introduce participants to the Gen 2 device and calibrate the neckband

for optimal body placement, participants were instructed to take the device home, equip and turn on the device

each morning, wear the device throughout the day, remove and turn off the device at the end of the day, and

charge the device overnight each night. Participants were informed that recording status was indicated by a blue

LED light inside the device’s enclosure (blinking = on, solid/absent = off). Participants used a provided laptop to

view brief clips of their data collected throughout the day, allowing them to view the effect of the obfuscation

technique on their collected data, thus allowing the obfuscation method to affect their wear time.

9.3 Methods: Iterative Case Design
9.3.1 Iterations through different 3D printing technoglogies. The initial prototypes of the device’s enclosure,

depicted in Figure 16, were fabricated using fused deposition modeling (FDM) with polylactic acid due to its rapid

and accessible printing capabilities despite producing lower-fidelity prints. Progressing to later stages, we adopted

Stereolithography (SLA) with a FormLabs printer, capitalizing on its ability to handle resins with variedmechanical

properties and create complex geometries beyond the scope of FDM. The higher resolution of the FormLabs
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Table 10. Hand-to-mouth (H2M) statistics across participants.

Participant Num. of H2M Gestures H2M Gestures
Smoking Eating Drinking Total Total Frames Total Duration (mins)

P1 non-smoker 128 58 186 2130 7.1

P2 non-smoker 538 481 1019 9574 31.9

P3 non-smoker 210 177 387 5547 18.5

P4 non-smoker 1233 299 1532 15750 52.5

P5 non-smoker 18 17 35 503 1.7

P6 957 486 283 1726 17892 59.6

P7 157 546 76 779 9610 32.0

P8 7 434 101 542 6257 20.9

P9 294 631 140 1065 10636 35.5

P10 1040 109 302 1451 29161 97.2

P11 531 66 43 640 6441 21.5

P12 79 199 54 332 4766 15.9

P13 non-smoker 582 219 801 8005 26.7

Mean 438 398 173 807 9713 32.4

Total 3065 5180 2250 10495 126272 420.9

Fig. 16. Iterative Design of HabitSense Enclosure. (A) Slim initial 3D design, (B) size comparison with ID card, (C) two-piece
hinge-connected enclosure, (D) rotatable internal mechanism for sensor adjustment, (E) revised enclosure with optimized
dimensions, (F) final product-quality design.

printer was crucial, as it permitted the precise replication of small design features and components, achieving an

optimal fit with minimal tolerances. Employing high-resolution SLA printing with a FormLabs printer allowed

for the precise placement of RGB and thermal sensors, facilitating the standardization of calibration parameters

across all devices, a process detailed in section 5.4 – on-device obfuscation. For the final design iteration, we

utilized selective laser sintering (SLS) technology with nylon to surpass the resolution offered by SLA. We applied

vapor smoothing to the SLS prints to alleviate their inherent rough texture.
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9.3.2 Iterations in design: hinge mechanism. We systematically enhanced the device design through empirical

prototype testing using various 3D printing techniques. Generations 1 and 2 utilized L-shaped components set

at diverse angles, allowing the device to be positioned by leveraging the L-shape for variable inclinations. We

made a notable improvement in Gen3 – HabitSense by adding a hinging mechanism into the enclosure itself

to adjust the field of view for wearers, as documented in Figure 16. Initial designs for this mechanism included

separate compartments for the battery and circuitry, resulting in a cumbersome design with exposed wiring

[Fig 16C]. Later designs [Fig 16 D,E,F] compacted the structure by limiting the hinge’s movement and relocating

only the thermal and RGB cameras to a rotatable cylindrical section, which could be fixed at specific angles

with screws for stability. These modifications not only reduced the bulkiness compared to Generations 1 and

2 but also improved the adaptability for users with different body types We also refined the case design from

an initial compact, rectangular shape with sharp corners to a form with rounded edges, improving ergonomics

and comfort. Adopting SLA and SLS printing technologies enabled the creation of these curves, which were not

attainable with FDM. Despite a slight increase in size, this trade-off was considered beneficial for its ergonomic

and aesthetic gains.

9.3.3 Magnetic backplate design. Ensuring the device remained stationary and did not sway when worn was

critical for collecting high-quality data. To address the detachment issues and instability stemming from an

inadequately strong magnetic plate in the Gen 1 and Gen 2 designs, which led to the device swaying or detaching

during moderately active movements, we developed a new magnetic back plate. This redesigned plate featured

a triangular shape with three points of contact, utilizing three magnets instead of the previous two, providing

a more robust and secure device attachment through the fabric. The advancements in the system’s volume

and weight, as delineated in Table 3 (Gen 3: HabitSense), along with the adoption of stronger magnets and a

triangular design for augmented contact points, effectively anchored the device in place, eliminating any sway.

Consequently, users could wear the device and engage in their daily routines without the distraction or concern

of its stability, assured by the magnetic backplate’s reliable hold.

9.3.4 Privacy-preserving case design. We designed the device’s case to position the RGB and thermal cameras

towards the user’s face, concentrating data collection on the target activity—hand-to-mouth gestures associated

with eating and smoking. This orientation minimized the recording of bystanders, maintaining privacy for those

who had not given consent.

9.4 Methods: Calculations for Day/Night, Variable Lighting Conditions, and Head Movement
The data collection for HabitSense included a free-living study where participants used the device continuously

for 7 days, with unrestricted usage during both day and night. This resulted in data from varied lighting

conditions—darker and brighter environments—and included variations in head movement. To ensure a rigorous

evaluation, it is crucial to test the robustness of our models under these diverse conditions.

Using an API [83], we obtained the sunrise and sunset times for the participants’ locations on the days they

wore the device. Subsequently, we calculated the number of eating, smoking, and drinking gestures recorded

during daytime versus nighttime.

Addressing potential concerns about the low-light performance of HabitSense, particularly as participants

might wear the device at night in well-lit indoor environments, we analyzed the perceived luminosity of each of the

13 million RGB frames, totaling approximately 768 hours of data. Luminosity was calculated for each pixel; thus,

for the entire frame, luminosity was determined by averaging the values for all the pixels in frames. We defined a

luminosity threshold to distinguish between brighter and darker frames, guided by the perceptual evaluation

of light intensity in RGB images and the statistical distribution of luminosity values across all frames (refer to

Figure 17). The median of this distribution served as the threshold, satisfying our criteria for differentiating light
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Fig. 17. Luminosity threshold determination

conditions. Accordingly, frames exceeding this threshold were classified as bright and those below as dark.

HabitSense was meticulously designed to ensure that the field of view (FOV) of our camera system lenses

comprehensively captures the full rotational and translational motion of the wearer’s neck and head (figure 18).

To address the challenges associated with accurately detecting eating and smoking activities amid frequent head

movements, it was essential first to quantify these movements precisely. We annotated the wearer’s head with a

bounding box and the nose with a keypoint across the 13 million frames collected from our free-living study. We

analyzed head movements using three key metrics (Figure 18):

• The Euclidean distance between the centroids of the bounding boxes across adjacent frames to measure the

movement of the head across frames.

• The amount of neck rotation was measured using the nose key points and the centroid of the bounding

box across frames.

• The change in the area of the bounding box across adjacent frames to measure the movement of the head

towards and away from the camera.

These metrics provided a comprehensive measure of head movements, encompassing both rotational and trans-

lational head motions captured throughout our study. We calculated these metrics for all eating and smoking

segments in our dataset and identified instances of high versus low head motion.

We assessed the robustness of our models across various sub-categories of data and incorporated attention

maps in the supplementary materials as an interpretability metric. This allows us to determine whether the

models focus on relevant features for accurate gesture detection.

9.5 Results: Data Statistics for Day/Night, Variable Lighting Conditions and Head Movement
To assess the robustness of our models, we calculated statistics for different conditions, including day/night,

brightness levels, and head motion intensity. Table 11 shows that 77.07% of the eating and smoking gestures were

recorded during the daytime, with the remaining 22.93% occurring at night. Furthermore, as indicated in Table 12,

66.37% of the gestures were recorded under bright conditions, while 33.63% were in darker settings. According

to Table 13, 80.85% of the gestures involved high-intensity head motion, and 19.15% featured low-intensity

movements. These data points highlight the variability in our dataset and highlight the importance of testing

model performance across these diverse conditions.
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Fig. 18. (A) Head movement range and fields of view for RGB and thermal cameras, (B) Head movement characterization,
including extension and flexion (top), lateral flexion (middle), and rotation (bottom)

Table 11. Daytime-Nightime table

no. of gestures captured during day time no. of gestures captured during night time

Participant Smoking Eating Drinking Total Smoking Eating Drinking Total

P1 128 48 176 0 10 10

P2 386 350 736 152 131 283

P3 95 68 163 115 109 224

P4 1184 266 1450 49 33 82

P5 8 13 21 10 4 14

P6 644 455 194 1293 313 31 89 433

P7 136 539 70 745 21 7 6 34

P8 7 406 48 461 0 28 53 81

P9 164 297 55 516 130 334 85 549

P10 573 93 184 850 467 16 118 601

P11 507 66 43 616 24 0 0 24

P12 72 177 48 297 7 22 6 35

P13 566 199 765 16 20 36

Mean 300 338 122 622 137 60 51 185

Total 2103 4400 1586 8089 962 780 664 2406

% of gestures 77% 23%

9.6 Results: Model Robustness Performance Metrics
As seen in figure 19, our eating detection model demonstrates robust performance, achieving F1-scores exceeding

89% in both day and night conditions, as well as during high-intensity head motions. In darker settings, the model
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Table 12. Luminosity table

no. of gestures in bright environments no. gestures in dark environments

Participant Smoking Eating Drinking Total Smoking Eating Drinking Total

P1 128 52 180 0 6 6

P2 391 438 829 147 43 190

P3 78 17 95 132 160 292

P4 902 203 1105 331 96 427

P5 18 13 31 0 4 4

P6 317 331 167 815 640 155 116 911

P7 46 142 34 222 111 404 42 557

P8 7 336 88 431 0 98 13 111

P9 271 601 135 1007 23 30 5 58

P10 749 66 208 1023 291 43 94 428

P11 327 32 17 376 204 34 26 264

P12 47 117 30 194 32 82 24 138

P13 477 181 658 105 38 143

Mean 252 278 122 536 186 120 51 271

Total 1764 3619 1583 6966 1301 1561 667 3529

% of gestures 66% 34%

Table 13. Head Motion Table

no. of gestures in high motion no. gestures in low motion

Participant Smoking Eating Drinking Total Smoking Eating Drinking Total

P1 105 43 148 22 15 37

P2 456 398 854 74 74 148

P3 156 113 269 49 44 93

P4 956 229 1185 188 46 234

P5 16 14 30 1 3 4

P6 643 424 221 1288 171 44 34 249

P7 81 405 36 522 24 120 23 167

P8 5 359 69 433 0 64 17 81

P9 243 551 102 896 45 64 38 147

P10 665 65 184 914 353 41 117 511

P11 426 58 32 516 40 0 3 43

P12 58 171 40 269 4 20 5 29

P13 451 131 582 58 71 129

Mean 303 321 124 608 91 57 38 144

Total 2121 4173 1612 7906 637 745 490 1872

% of gestures 81% 19%

achieves an F1-score of 85.58%. Similarly, our smoking detection model shows high efficacy, with F1-scores above
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85% during daytime and high-intensity head motions. However, during nighttime and low-light conditions, the

model’s F1-scores are slightly lower, registering at 79.07% and 83.84%, respectively.

Activity Evaluation by

0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.5 0.6 0.7 0.8 0.9 1.0

Accuracy

0.5 0.6 0.7 0.8 0.9 1.0

F1-score

Eating Daytime
Nighttime
Bright-frames
Dark-frames
Lowheadmotion
High headmotion

Smoking Daytime
Nighttime
Bright-frames
Dark-frames
Lowheadmotion
High headmotion

Model RobustnessAnalysis
Daytime Nighttime Bright-frames Dark-frames Lowheadmotion High headmotion

Fig. 19. Perfomance of eating and smoking detection TimeSformer models trained on RGB data in different circumstances to
highlight robustness

9.7 Individual Performance metrics
The following list of tables provides individual performance metrics for each of the machine learning models we

trained across different settings and data modalities:

• Eating Detection, Off-device RGB: Table 16

• Eating Detection, Off-device Thermal: Table 17

• Eating Detection, On-device Thermal: Table 18

• Eating Detection, Off-device RGB Obfuscated (Mask): Table 14

• Eating Detection, Off-device RGB Obfuscated (Blur): Table 15

• Smoking Detection, Off-device RGB: Table 25

• Smoking Detection, Off-device Thermal: Table 26

• Smoking Detection, On-device Thermal: Table 27

• Smoking Detection, Off-device RGB Obfuscated (Mask): Table 28

• Smoking Detection, Off-device RGB Obfuscated (Blur): Table 24

• H2M Detection, Off-device RGB: Table 21

• H2M Detection, Off-device Thermal: Table 22

• H2M Detection, On-device Thermal: Table 23

• H2M Detection, Off-device RGB Obfuscated (Mask): Table 19

• H2M Detection, Off-device RGB Obfuscated (Blur): Table 20

• Multiclass Detection, Off-device RGB (Weighted Scores): Table 31

• Multiclass Detection, Off-device Thermal (Weighted Scores): Table 32

• Multiclass Detection, On-device Thermal (Weighted Scores): Table 33

• Multiclass Detection, Off-device RGB Obfuscated (Mask) (Weighted Scores): Table 29

• Multiclass Detection, Off-device RGB Obfuscated (Blur) (Weighted Scores): Table 30

Received 15 November 2023; revised 1 May 2024
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Average Metrics
by no. of Participants

Fig. 20. This figure illustrates the results of our incremental data addition experiment designed to evaluate the impact of
incorporating additional participant data into our model training.

Table 14. eating-offdevice-rgb-obfuscated-mask

pid precision recall f1_score accuracy

P1 0.80 0.76 0.78 0.78

P2 0.84 0.89 0.87 0.86

P3 0.85 0.77 0.81 0.82

P4 0.91 0.74 0.82 0.83

P5 0.86 0.86 0.86 0.86

P6 0.79 0.82 0.80 0.80

P7 0.80 0.67 0.73 0.75

P8 0.95 0.53 0.68 0.75

P9 0.85 0.79 0.82 0.82

P10 0.63 0.82 0.71 0.67

P11 0.65 0.83 0.73 0.69

P12 0.88 0.79 0.83 0.84

P13 0.93 0.79 0.86 0.87

Mean 0.82 0.77 0.79 0.80

Table 15. eating-offdevice-rgb-obfuscated-blur

pid precision recall f1_score accuracy

P1 0.88 0.92 0.90 0.90

P2 0.86 0.93 0.89 0.89

P3 0.92 0.88 0.90 0.90

P4 0.95 0.79 0.86 0.87

P5 0.82 0.80 0.81 0.81

P6 0.87 0.91 0.89 0.89

P7 0.88 0.65 0.75 0.78

P8 0.96 0.65 0.78 0.81

P9 0.88 0.84 0.86 0.86

P10 0.72 0.85 0.78 0.76

P11 0.71 0.81 0.76 0.74

P12 0.86 0.94 0.90 0.89

P13 0.92 0.88 0.90 0.90

Mean 0.86 0.83 0.84 0.85
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(a) Eating gesture (mean=10)
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(b) Smoking Gesture (mean=12)
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(c) Hand-to-mouth gestures (mean=10)

Fig. 21. Distribution of number of frames comprising one eating gesture (mean=10), smoking gesture (mean=12), and
hand-to-mouth gestures (mean=10)
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Eating - RGB

Eating - RGB - Obfuscated using thermal mask

Smoking - RGB - Obfuscated using thermal mask

Eating - Thermal

Smoking - RGB
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Smoking - RGB - during nighttime, dark frame, high-head motion segment

Fig. 22. Attention maps
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Table 16. eating-offdevice-rgb

pid precision recall f1_score accuracy

P1 0.92 0.91 0.92 0.92

P2 0.92 0.93 0.92 0.92

P3 0.96 0.84 0.89 0.90

P4 0.96 0.80 0.87 0.88

P5 0.94 0.91 0.93 0.93

P6 0.86 0.98 0.92 0.91

P7 0.90 0.83 0.87 0.87

P8 0.95 0.83 0.89 0.89

P9 0.93 0.94 0.93 0.93

P10 0.77 0.84 0.80 0.79

P11 0.88 0.85 0.87 0.87

P12 0.90 0.95 0.93 0.92

P13 0.95 0.91 0.93 0.93

Mean 0.91 0.89 0.90 0.90

Table 17. eating-offdevice-thermal

pid precision recall f1_score accuracy

P1 0.84 0.97 0.90 0.89

P2 0.96 0.63 0.76 0.80

P3 0.89 0.94 0.91 0.91

P4 0.87 0.90 0.88 0.88

P5 0.76 0.80 0.78 0.77

P6 0.79 0.89 0.84 0.83

P7 0.92 0.90 0.91 0.91

P8 0.95 0.81 0.87 0.88

P9 0.90 0.87 0.88 0.88

P10 0.92 0.85 0.88 0.89

P11 0.81 0.89 0.85 0.84

P12 0.87 0.87 0.87 0.87

P13 0.86 0.82 0.84 0.84

Mean 0.87 0.86 0.86 0.86

Table 18. eating-ondevice-thermal

pid precision recall f1_score accuracy

P1 0.73 0.49 0.58 0.65

P2 0.81 0.60 0.69 0.73

P3 0.72 0.53 0.61 0.66

P4 0.71 0.60 0.65 0.68

P5 0.60 0.48 0.53 0.58

P6 0.58 0.47 0.52 0.57

P7 0.67 0.63 0.65 0.66

P8 0.78 0.46 0.58 0.66

P9 0.45 0.24 0.31 0.47

P10 0.57 0.71 0.63 0.59

P11 0.55 0.78 0.64 0.57

P12 0.65 0.63 0.64 0.65

P13 0.96 0.54 0.69 0.76

Mean 0.67 0.55 0.60 0.63

Table 19. h2m-offdevice-rgb-obfuscated-mask

pid precision recall f1_score accuracy

P1 0.83 0.82 0.82 0.82

P2 0.86 0.94 0.90 0.89

P3 0.91 0.90 0.91 0.91

P4 0.91 0.87 0.89 0.89

P5 0.85 0.80 0.82 0.83

P6 0.92 0.89 0.91 0.91

P7 0.91 0.77 0.83 0.85

P8 0.92 0.85 0.88 0.89

P9 0.93 0.89 0.91 0.91

P10 0.87 0.88 0.87 0.87

P11 0.78 0.87 0.82 0.81

P12 0.89 0.86 0.88 0.88

P13 0.92 0.79 0.85 0.86

Mean 0.88 0.86 0.87 0.87
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Table 20. h2m-offdevice-rgb-obfuscated-blur

pid precision recall f1_score accuracy

P1 0.88 0.89 0.89 0.89

P2 0.86 0.98 0.92 0.91

P3 0.94 0.95 0.94 0.94

P4 0.95 0.88 0.91 0.92

P5 0.89 0.91 0.90 0.90

P6 0.96 0.90 0.93 0.93

P7 0.91 0.84 0.87 0.88

P8 0.96 0.89 0.92 0.92

P9 0.96 0.89 0.92 0.93

P10 0.91 0.84 0.87 0.88

P11 0.80 0.83 0.82 0.81

P12 0.89 0.84 0.86 0.87

P13 0.94 0.87 0.90 0.91

Mean 0.91 0.88 0.90 0.90

Table 21. h2m-offdevice-rgb

pid precision recall f1_score accuracy

P1 0.91 0.86 0.89 0.89

P2 0.91 0.99 0.95 0.94

P3 0.95 0.91 0.93 0.93

P4 0.96 0.93 0.94 0.94

P5 0.87 0.94 0.90 0.90

P6 0.95 0.96 0.96 0.96

P7 0.93 0.92 0.92 0.92

P8 0.95 0.95 0.95 0.95

P9 0.95 0.98 0.96 0.96

P10 0.94 0.90 0.92 0.92

P11 0.90 0.89 0.90 0.90

P12 0.92 0.89 0.90 0.90

P13 0.95 0.90 0.92 0.92

Mean 0.93 0.92 0.93 0.93

Table 22. h2m-offdevice-thermal

pid precision recall f1_score accuracy

P1 0.87 0.90 0.89 0.88

P2 0.96 0.66 0.78 0.82

P3 0.88 0.93 0.90 0.90

P4 0.91 0.91 0.91 0.91

P5 0.73 0.77 0.75 0.74

P6 0.91 0.89 0.90 0.90

P7 0.93 0.84 0.88 0.89

P8 0.94 0.87 0.90 0.91

P9 0.92 0.89 0.91 0.91

P10 0.87 0.83 0.85 0.85

P11 0.82 0.86 0.84 0.84

P12 0.89 0.93 0.91 0.90

P13 0.89 0.79 0.84 0.85

Mean 0.89 0.85 0.87 0.87

Table 23. h2m-ondevice-thermal

pid precision recall f1_score accuracy

P1 0.88 0.42 0.57 0.68

P2 0.75 0.72 0.74 0.74

P3 0.79 0.68 0.73 0.75

P4 0.77 0.69 0.73 0.74

P5 0.68 0.48 0.56 0.62

P6 0.80 0.71 0.76 0.77

P7 0.85 0.69 0.76 0.78

P8 0.68 0.73 0.71 0.69

P9 0.86 0.50 0.63 0.71

P10 0.72 0.79 0.75 0.74

P11 0.72 0.86 0.79 0.77

P12 0.78 0.82 0.80 0.80

P13 0.97 0.58 0.73 0.78

Mean 0.79 0.67 0.71 0.74
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Table 24. smoking-offdevice-rgb-obfuscated-blur

pid precision recall f1 score accuracy

P6 0.88 0.85 0.87 0.87

P7 0.81 0.92 0.86 0.85

P8 0.50 0.29 0.36 0.50

P9 0.97 0.86 0.91 0.92

P10 0.88 0.56 0.69 0.74

P11 0.76 0.69 0.73 0.74

P12 0.82 0.85 0.83 0.83

Mean 0.80 0.72 0.75 0.78

Table 25. smoking-offdevice-rgb

pid precision recall f1 score accuracy

P6 0.94 0.90 0.92 0.92

P7 0.93 0.89 0.91 0.91

P8 0.75 0.86 0.80 0.79

P9 0.96 0.95 0.96 0.96

P10 0.91 0.67 0.77 0.80

P11 0.82 0.78 0.80 0.80

P12 0.92 0.76 0.83 0.85

Mean 0.89 0.83 0.86 0.86

Table 26. smoking-offdevice-thermal

pid precision recall f1 score accuracy

P6 0.90 0.72 0.80 0.82

P7 0.97 0.93 0.95 0.95

P8 1.00 0.86 0.92 0.93

P9 0.87 0.76 0.81 0.82

P10 0.83 0.83 0.83 0.83

P11 0.81 0.77 0.79 0.80

P12 0.82 0.92 0.87 0.86

Mean 0.89 0.83 0.85 0.86

Table 27. smoking-ondevice-thermal

pid precision recall f1 score accuracy

P6 0.61 0.65 0.63 0.62

P7 0.79 0.94 0.86 0.84

P8 0.75 1.00 0.86 0.83

P9 0.89 0.39 0.54 0.67

P10 0.84 0.79 0.81 0.82

P11 0.80 0.82 0.81 0.81

P12 0.70 0.88 0.78 0.76

Mean 0.77 0.78 0.76 0.76

Table 28. smoking-offdevice-rgb-obfuscated-mask

pid precision recall f1_score accuracy

P6 0.80 0.61 0.70 0.73

P7 0.81 0.83 0.82 0.82

P8 0.33 0.14 0.20 0.43

P9 0.94 0.74 0.83 0.84

P10 0.78 0.38 0.51 0.64

P11 0.72 0.54 0.61 0.66

P12 0.72 0.76 0.74 0.73

Mean 0.73 0.57 0.63 0.70

Table 29. multiclass-offdevice-rgb-obfuscated-mask
(weighted-scores)

pid precision recall f1_score accuracy

P6 0.69 0.68 0.68 0.68

P7 0.66 0.65 0.62 0.65

P8 0.50 0.52 0.46 0.52

P9 0.75 0.73 0.73 0.73

P10 0.61 0.60 0.60 0.60

P11 0.65 0.63 0.63 0.63

P12 0.70 0.70 0.69 0.70

Mean 0.65 0.65 0.63 0.64

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 101. Publication date: September 2024.



101:48 • Fernandes et al.

Table 30. multiclass-offdevice-rgb-obfuscated-blur (weighted-
scores)

pid precision recall f1_score accuracy

P6 0.84 0.84 0.84 0.84

P7 0.72 0.69 0.67 0.69

P8 0.52 0.52 0.52 0.52

P9 0.82 0.80 0.80 0.80

P10 0.72 0.72 0.72 0.72

P11 0.70 0.68 0.68 0.68

P12 0.79 0.78 0.78 0.78

Mean 0.73 0.72 0.71 0.72

Table 31. multiclass-offdevice-rgb (weighted-scores)

pid precision recall f1_score accuracy

P6 0.90 0.90 0.90 0.90

P7 0.79 0.75 0.75 0.75

P8 0.82 0.76 0.76 0.76

P9 0.91 0.91 0.91 0.91

P10 0.82 0.82 0.82 0.82

P11 0.80 0.80 0.80 0.80

P12 0.84 0.84 0.84 0.84

Mean 0.84 0.83 0.83 0.83

Table 32. multiclass-offdevice-thermal (weighted-scores)

pid precision recall f1_score accuracy

P6 0.79 0.78 0.78 0.78

P7 0.85 0.84 0.84 0.84

P8 0.86 0.86 0.85 0.86

P9 0.80 0.79 0.79 0.79

P10 0.76 0.75 0.75 0.75

P11 0.74 0.72 0.72 0.72

P12 0.86 0.85 0.85 0.85

Mean 0.81 0.80 0.80 0.80

Table 33. multiclass-ondevice-thermal (weighted-scores)

pid precision recall f1_score accuracy

P6 0.46 0.46 0.46 0.46

P7 0.65 0.65 0.61 0.65

P8 0.87 0.78 0.75 0.78

P9 0.62 0.51 0.48 0.51

P10 0.69 0.69 0.69 0.69

P11 0.64 0.63 0.62 0.63

P12 0.56 0.56 0.50 0.56

Mean 0.64 0.61 0.59 0.61
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